forked from xiemk/MLC-PAT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_PAT-I.py
253 lines (179 loc) · 8.16 KB
/
run_PAT-I.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse
import math
import os, sys
import random
import time
import json
import numpy as np
import datetime
import torch
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
import torch.optim
import torch.utils.data
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from src_files.utils.logger import setup_logger
from src_files.utils.meter import AverageMeter, AverageMeterHMS, ProgressMeter
from src_files.utils.helper import function_mAP, add_weight_decay, get_raw_dict, ModelEma, clean_state_dict
from src_files.models.factory import create_model
from src_files.data.data import get_datasets
from torch.cuda.amp import GradScaler, autocast
NUM_CLASS = {'voc2007': 20, 'coco': 80, 'vg256': 256}
def get_args():
parser = argparse.ArgumentParser(description='Clean ASL Training')
# data
parser.add_argument('--data_name', help='dataset name', default='coco', choices=['voc2007', 'coco','vg256'])
parser.add_argument('--data_dir', help='dir of all datasets', default='/home/algroup/xmk/data')
parser.add_argument('--image_size', default=448, type=int,
help='size of input images')
parser.add_argument('--output', metavar='DIR', default='./outputs',
help='path to output folder')
# model
parser.add_argument('--model_name', default='tresnet_l')
parser.add_argument('--pretrain_type', default='', type=str)
parser.add_argument('--pretrain_dir', default='/home/algroup/xmk/PAT/pretrained', type=str)
# train
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('-b', '--batch_size', default=64, type=int,
help='batch size')
parser.add_argument('-p', '--print_freq', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
# patching
parser.add_argument('--n_grid', default=2, type=int)
# random seed
parser.add_argument('--seed', default=1, type=int,
help='seed for initializing training. ')
parser.add_argument('--resume', help='dir of all datasets', default='/home/algroup/xmk/Patching/outputs/vg500/asl_dist_tresnet_l_21k_mldecoder_576_adam_0.0002_64_80/model_best.pth.tar')
args = parser.parse_args()
args.num_classes = NUM_CLASS[args.data_name]
args.data_dir = os.path.join(args.data_dir, args.data_name)
args.output = os.path.join(args.output, args.data_name, f'PAT_I_{args.model_name}_{args.pretrain_type}_{args.image_size}_seed_{args.seed}')
return args
def main():
args = get_args()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
os.makedirs(args.output, exist_ok=True)
logger = setup_logger(output=args.output, color=False, name="XXX")
logger.info("Command: "+' '.join(sys.argv))
path = os.path.join(args.output, "config.json")
with open(path, 'w') as f:
json.dump(get_raw_dict(args), f, indent=2)
logger.info("Full config saved to {}".format(path))
return main_worker(args, logger)
def main_worker(args, logger):
# build model
print('creating model...')
model = create_model(args).cuda()
# Data loading
train_dataset, val_dataset = get_datasets(args, patch=True)
train_labels = train_dataset.Y
pos_ratio = train_labels.sum(0)/train_labels.shape[0]
print(pos_ratio)
logger.info("len(train_dataset)): {}".format(len(train_dataset)))
logger.info("len(val_dataset)): {}".format(len(val_dataset)))
# Pytorch Data loader
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False)
# Set optimizer
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
state_dict = clean_state_dict(checkpoint['state_dict_ema'])
logger.info(f"mAP: {checkpoint['best_mAP']}")
model.load_state_dict(state_dict, strict=True)
del checkpoint
del state_dict
torch.cuda.empty_cache()
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
mAP, APs, labels, probs = patch_validate(val_loader, model, args, logger)
np.save(os.path.join(args.output, 'probs.npy'), probs)
np.save(os.path.join(args.output, 'labels.npy'), labels)
# preds = label_decision(labels, probs, pos_ratio)
thresholding(labels, probs, logger)
return 0
patch_validate(val_loader, model, args, logger)
def calculate_metric(preds, labels):
n_correct_pos = (labels*preds).sum(0)
n_pred_pos = ((preds==1)).sum(0)
n_true_pos = labels.sum(0)
OP = n_correct_pos.sum()/n_pred_pos.sum()
CP = np.nanmean(n_correct_pos/n_pred_pos)
OR = n_correct_pos.sum()/n_true_pos.sum()
CR = np.nanmean(n_correct_pos/n_true_pos)
CF1 = (2 * CP * CR) / (CP + CR)
OF1 = (2 * OP * OR) / (OP + OR)
return CP, CR, CF1, OP, OR, OF1
def thresholding(labels, probs, logger):
for thre in [0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85, 0.9, 0.95]:
preds = (probs>thre).astype(np.float32)
metrics = calculate_metric(preds, labels)
logger.info(f'{thre}, {np.round(np.array(metrics)*100, decimals=1)}')
return 0
def label_decision(labels, probs, pos_ratio):
sorted_probs = -np.sort(-probs, axis=0)
indices = [int(x)-1 for x in pos_ratio*labels.shape[0]]
thre_vec = sorted_probs[indices, range(probs.shape[1])]
preds = (probs>=thre_vec).astype(np.float32)
return preds
def weighted_sum(batch_size, logits_pat_1, logits_pat_2):
split_list1 = torch.split(logits_pat_1, batch_size) # [64,80] -> 4 * [16,80]
logits_joint1 = torch.stack(split_list1, dim=1) # 4 * [16,80] -> [16, 4, 80]
logits_sfmx1 = torch.softmax(logits_joint1, dim=1) # [16, {4}, 80]
split_list2 = torch.split(logits_pat_2, batch_size) # [64,80] -> 4 * [16,80]
logits_joint2 = torch.stack(split_list2, dim=1) # 4 * [16,80] -> [16, 4, 80]
logits_joint = (logits_sfmx1 * logits_joint2).sum(dim=1) # [16, 4, 80] -> [16,80]
return logits_joint
@torch.no_grad()
def patch_validate(val_loader, model, args, logger):
batch_time = AverageMeter('Time', ':5.3f')
mem = AverageMeter('Mem', ':.0f', val_only=True)
progress = ProgressMeter(
len(val_loader),
[batch_time, mem],
prefix='Test: ')
# switch to evaluate mode
model.eval()
preds = []
labels = []
end = time.time()
for i, (inputs, targets) in enumerate(val_loader):
batch_size = targets.shape[0]
inputs = torch.cat(inputs, dim=0).cuda(non_blocking=True)
# compute output
with autocast():
outputs = model(inputs)
outputs_ori = outputs[:batch_size]
outputs_pat_1, outputs_pat_2 = outputs[batch_size:], outputs[batch_size:]
outputs_pat = weighted_sum(batch_size, outputs_pat_1, outputs_pat_2)
outputs = torch.sigmoid((outputs_ori+ outputs_pat)/2)
# add list
preds.append(outputs.detach().cpu())
labels.append(targets.detach().cpu())
# record memory
mem.update(torch.cuda.max_memory_allocated() / 1024.0 / 1024.0)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % (2*args.print_freq) == 0:
progress.display(i, logger)
labels = torch.cat(labels).numpy()
preds = torch.cat(preds).numpy()
# calculate mAP
mAP, APs= function_mAP(labels, preds)
print("Calculating mAP:")
logger.info(" mAP: {:.2f}".format(mAP))
return mAP, APs, labels, preds
if __name__ == '__main__':
main()