-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
157 lines (105 loc) · 3.53 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import math
import inline as inline
import matplotlib as matplotlib
import numpy as np
import matplotlib.pyplot as plt
import h5py
m_train = 1
m_test = 1
def base_sigmoid(x):
s = 1.0 / (1.0 + math.exp(-1 * x))
return s;
def base_tanh(x):
s = math.tanh(x)
return s;
def Sigmoid(matris):
result = 1 / (1 + np.exp((-1) * matris))
return result;
def Tanh(matris):
result = np.tanh(matris)
return result;
def Sigmoid_Derivative(matris):
date = Sigmoid(matris)
return date * (1 - date);
def Tanh_Derivative(matris):
date = Tanh(matris)
return (1 - date * date);
def ConvertorImageToVector(image):
vector = image.reshape(image.shape[0] * image.shape[1] * image.shape[2], 1)
return vector;
def NormalizeRows(matris):
date = np.linalg.norm(matris, axis=1, keepdims=True)
return matris / date;
def L1(yhat , y):
t = np.abs(yhat , y)
return np.sum(t);
def L2(yhat , y):
t = np.abs(yhat , y)
return np.sum(np.multiply(t,t));
def Initializing_Parameters():
##train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes;
##m_test = len(test_set_y)
##m_train = len(train_set_y)
return;
def Initialize_With_Zeros(dim):
w = np.zeros((dim , 1))
b = 0
assert(w.shape == (dim , 1))
assert(isinstance(b, float) or isinstance(b, int))
return w , b;
def Propagate(w, b, X, Y):
m = X.shape[1]
A = Sigmoid(np.dot(np.transpose(w),X) + b) # compute activation
temp = np.multiply(Y , np.log(A)) + np.multiply(1 - Y,np.log(1 - A))
cost = (-1/m) * np.sum(temp) # compute cost
dz = A - Y
dw = (1/m) * np.dot(X,np.transpose(dz))
db = (1/m) *np.sum(dz)
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
for i in range(num_iterations):
grads, cost = Propagate(w, b, X, Y)
dw = grads["dw"]
db = grads["db"]
w = w - learning_rate * dw
b = b - learning_rate * db
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads;
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0], 1)
A = Sigmoid(np.dot(np.transpose(w),X) + b)
for i in range(A.shape[1]):
if A[0 ,i] >= 0.5 :
Y_prediction[0 ,i] = 1
if A[0,i] < 0.5:
Y_prediction[0 , i] = 0
assert(Y_prediction.shape == (1, m))
return Y_prediction
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
w, b = np.zeros(X_train.shape) , 0
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost = False)
w = parameters["w"]
b = parameters["b"]
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d