-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathexport_results.py
374 lines (316 loc) · 12.3 KB
/
export_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
from elleelleaime.core.utils.jsonl import stream_jsonl
from elleelleaime.export.cost.cost_calculator import CostCalculator
from elleelleaime.core.caching.cache import Cache
from pathlib import Path
from typing import Optional
import numpy as np
import uuid
import fire
import shutil
import sys
import tqdm
import logging
import json
import os
import tempfile
import subprocess
def exact_match(evaluation: dict) -> bool:
"""
Returns True if the evaluation is an exact match.
"""
return evaluation is not None and bool(evaluation["exact_match"])
def ast_match(evaluation: dict) -> bool:
"""
Returns True if the evaluation is an AST match.
"""
return evaluation is not None and bool(evaluation["ast_match"])
def plausible(evaluation: dict) -> bool:
"""
Returns True if the evaluation is plausible.
"""
return evaluation is not None and bool(evaluation["test"])
def compilable(evaluation: dict) -> bool:
"""
Returns True if the evaluation is compilable.
"""
return evaluation is not None and bool(evaluation["compile"])
def compute_diff(buggy_code: str, fixed_code: str, context_len: int = 3) -> str:
"""
Computes the diff between the buggy and fixed code.
"""
buggy_path = Path(tempfile.gettempdir(), f"{uuid.uuid4()}_buggy.java")
with open(buggy_path, "w") as f:
f.write(buggy_code)
fixed_path = Path(tempfile.gettempdir(), f"{uuid.uuid4()}_fixed.java")
with open(fixed_path, "w") as f:
f.write(fixed_code)
# we want to ignore whitespace changes with -w which does not exist in difflib.unified_diff
# with git diff, we even get the name of the changed function in the diff, which helps a lot
cmd = f"git diff --patience -U{context_len} -w {buggy_path} {fixed_path}"
run = subprocess.run(cmd, shell=True, capture_output=True)
return run.stdout.decode("utf-8")
def pass_at_k(n: int, c: int, k: int):
"""
:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@$k$
"""
if n - c < k:
return 1.0
else:
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
def compute_statistics(samples: list) -> dict:
"""
Computes statistics over the evaluation.
"""
statistics = {
"num_bugs": 0,
"num_bugs_with_prompt": 0,
"num_bugs_with_patches": 0,
"num_bugs_with_exact_match_candidates": 0,
"num_bugs_with_ast_match_candidates": 0,
"num_bugs_with_plausible_candidates": 0,
"num_bugs_with_compilable_candidates": 0,
"num_patches": 0,
"num_compilable_patches": 0,
"num_plausible_patches": 0,
"num_ast_match_patches": 0,
"num_exact_match_patches": 0,
"bugs_with_exact_match_candidates": [],
"bugs_with_ast_match_candidates": [],
"bugs_with_plausible_candidates": [],
"bugs_with_compilable_candidates": [],
}
for sample in tqdm.tqdm(samples, "Computing statistics..."):
statistics["num_bugs"] += 1
if sample["prompt"]:
statistics["num_bugs_with_prompt"] += 1
if "generation" in sample and sample["generation"]:
statistics["num_bugs_with_patches"] += 1
statistics["num_patches"] += len(sample["evaluation"])
statistics["num_compilable_patches"] += sum(
compilable(candidate) for candidate in sample["evaluation"]
)
statistics["num_plausible_patches"] += sum(
plausible(candidate) for candidate in sample["evaluation"]
)
statistics["num_ast_match_patches"] += sum(
ast_match(candidate) for candidate in sample["evaluation"]
)
statistics["num_exact_match_patches"] += sum(
exact_match(candidate) for candidate in sample["evaluation"]
)
if any(exact_match(candidate) for candidate in sample["evaluation"]):
statistics["num_bugs_with_exact_match_candidates"] += 1
statistics["bugs_with_exact_match_candidates"].append(
sample["identifier"]
)
if any(ast_match(candidate) for candidate in sample["evaluation"]):
statistics["num_bugs_with_ast_match_candidates"] += 1
statistics["bugs_with_ast_match_candidates"].append(
sample["identifier"]
)
if any(compilable(candidate) for candidate in sample["evaluation"]):
statistics["num_bugs_with_compilable_candidates"] += 1
statistics["bugs_with_compilable_candidates"].append(
sample["identifier"]
)
if any(plausible(candidate) for candidate in sample["evaluation"]):
statistics["num_bugs_with_plausible_candidates"] += 1
statistics["bugs_with_plausible_candidates"].append(
sample["identifier"]
)
# geometric progression over k
for k in [1, 10, 100]:
if k < (statistics["num_patches"] // statistics["num_bugs_with_patches"]):
statistics[f"exact_match@{k}"] = round(
pass_at_k(
statistics["num_patches"],
statistics["num_exact_match_patches"],
k,
),
3,
)
statistics[f"ast_match@{k}"] = round(
pass_at_k(
statistics["num_patches"],
statistics["num_ast_match_patches"],
k,
),
3,
)
statistics[f"plausible@{k}"] = round(
pass_at_k(
statistics["num_patches"],
statistics["num_plausible_patches"],
k,
),
3,
)
statistics[f"compilable@{k}"] = round(
pass_at_k(
statistics["num_patches"],
statistics["num_compilable_patches"],
k,
),
3,
)
statistics["bugs_with_exact_match_candidates"].sort()
statistics["bugs_with_ast_match_candidates"].sort()
statistics["bugs_with_plausible_candidates"].sort()
statistics["bugs_with_compilable_candidates"].sort()
return statistics
def compute_costs(samples: list, provider: str, model_name: str) -> Optional[dict]:
"""
Computes the costs of the evaluation.
"""
return CostCalculator.compute_costs(samples, provider, model_name)
def export_patches(samples: list, dir_path: str) -> None:
"""
Exports the patches to text files in structured directories.
"""
# Remove the existing patches directory
patches_dir = os.path.join(dir_path, "patches")
if os.path.exists(patches_dir):
shutil.rmtree(patches_dir)
for sample in tqdm.tqdm(samples, "Exporting patches..."):
if (
"generation" not in sample
or not sample["generation"]
or all(
candidate["generation"] is None if candidate is not None else None
for candidate in sample["evaluation"]
)
):
continue
# Write prompt, target diff to file
target_diff = compute_diff(
sample["buggy_code"],
sample["fixed_code"],
context_len=max(
len(sample["buggy_code"].splitlines()),
len(sample["fixed_code"].splitlines()),
),
)
sample_dir = os.path.join(patches_dir, sample["identifier"])
os.makedirs(sample_dir, exist_ok=True)
with open(os.path.join(sample_dir, "target.diff"), "w") as f:
f.writelines(target_diff)
with open(os.path.join(sample_dir, "prompt.txt"), "w") as f:
f.write(sample["prompt"])
for i, candidate in enumerate(sample["evaluation"]):
if candidate is None or not candidate["generation"]:
continue
# Compute diff between generated code and buggy code
diff = compute_diff(
sample["buggy_code"],
candidate["generation"],
context_len=max(
len(sample["buggy_code"].splitlines()),
len(candidate["generation"].splitlines()),
),
)
# Store in the most restrictive sub-directory
if exact_match(candidate):
sub_dir = "exact_match"
elif ast_match(candidate):
sub_dir = "ast_match"
elif plausible(candidate):
sub_dir = "plausible"
elif compilable(candidate):
sub_dir = "compilable"
else:
sub_dir = "non_compilable"
candidate_dir = os.path.join(sample_dir, sub_dir)
os.makedirs(candidate_dir, exist_ok=True)
with open(os.path.join(candidate_dir, f"{i}.diff"), "w") as f:
f.writelines(diff)
def export_bugs(samples, dir_path):
"""
Exports list of bugs considered in each category to text files.
"""
bugs_with_prompt = sorted(
[sample["identifier"] for sample in samples if sample["prompt"] is not None]
)
bugs_with_candidates = sorted(
[
sample["identifier"]
for sample in samples
if "generation" in sample
and sample["generation"] is not None
and len(sample["generation"]) > 0
and not all(
candidate["generation"] is None if candidate is not None else None
for candidate in sample["evaluation"]
)
]
)
with open(os.path.join(dir_path, "bugs_with_prompt.txt"), "w") as f:
f.write("\n".join(bugs_with_prompt))
with open(os.path.join(dir_path, "bugs_with_candidates.txt"), "w") as f:
f.write("\n".join(bugs_with_candidates))
def export_cache(samples: list, cache_path: str, benchmark: str):
"""
Exports the results of an evaluation file to the cache directory.
"""
cache = Cache(cache_path)
for sample in samples:
if "generation" in sample and sample["generation"] is not None:
for evaluation in sample["evaluation"]:
if evaluation is not None and evaluation["generation"] is not None:
cache.save_to_cache(
benchmark,
sample["identifier"],
evaluation["generation"],
evaluation,
)
def entry_point(
benchmark: str,
samples_path: str,
output_dir: Optional[str] = None,
**kwargs,
):
"""
Exports the results of an evaluation file to a structured directory.
"""
# Get the benchmark, check if it exists, and initialize it
samples_file_name = os.path.basename(samples_path)
dir_path = output_dir or os.path.dirname(samples_path)
prompt_strategy = samples_file_name.split("_")[2].split(".")[0]
provider = samples_file_name.split("_")[3].split(".")[0]
# Read the samples
logging.info("Reading samples...")
samples = list(stream_jsonl(samples_path))
# Compute statistics for all samples
statistics = compute_statistics(samples)
with open(
os.path.join(
dir_path, f"statistics_{benchmark}_{prompt_strategy}_{provider}.json"
),
"w",
) as f:
json.dump(statistics, f, indent=4)
# Compute costs for all samples
model_name = kwargs.get("model_name", None)
if provider:
costs = compute_costs(samples, provider, model_name)
if costs is not None:
costs["provider"] = provider
with open(
os.path.join(
dir_path, f"costs_{benchmark}_{prompt_strategy}_{provider}.json"
),
"w",
) as f:
json.dump(costs, f, indent=4)
# Export patches to text files in structured directories
export_patches(samples, dir_path)
export_bugs(samples, dir_path)
# Export results to cache (and check for inconsistencies)
cache_path = kwargs.get("cache_path", Path("cache"))
export_cache(samples, cache_path, benchmark)
def main():
logging.getLogger().setLevel(logging.INFO)
fire.Fire(entry_point)
if __name__ == "__main__":
sys.exit(main())