-
Notifications
You must be signed in to change notification settings - Fork 0
/
vec2d.py
329 lines (278 loc) · 10.1 KB
/
vec2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
################## http://www.pygame.org/wiki/2DVectorClass ##################
import operator
import math
class Vec2d(object):
"""2d vector class, supports vector and scalar operators,
and also provides a bunch of high level functions
"""
__slots__ = ['x', 'y']
def __init__(self, x_or_pair, y = None):
if y == None:
self.x = x_or_pair[0]
self.y = x_or_pair[1]
else:
self.x = x_or_pair
self.y = y
def __len__(self):
return 2
def __getitem__(self, key):
if key == 0:
return self.x
elif key == 1:
return self.y
else:
raise IndexError("Invalid subscript "+str(key)+" to Vec2d")
def __setitem__(self, key, value):
if key == 0:
self.x = value
elif key == 1:
self.y = value
else:
raise IndexError("Invalid subscript "+str(key)+" to Vec2d")
# String representaion (for debugging)
def __repr__(self):
return 'Vec2d(%s, %s)' % (self.x, self.y)
# Comparison
def __eq__(self, other):
if hasattr(other, "__getitem__") and len(other) == 2:
return self.x == other[0] and self.y == other[1]
else:
return False
def __ne__(self, other):
if hasattr(other, "__getitem__") and len(other) == 2:
return self.x != other[0] or self.y != other[1]
else:
return True
def __nonzero__(self):
return bool(self.x or self.y)
# Generic operator handlers
def _o2(self, other, f):
"Any two-operator operation where the left operand is a Vec2d"
if isinstance(other, Vec2d):
return Vec2d(f(self.x, other.x),
f(self.y, other.y))
elif (hasattr(other, "__getitem__")):
return Vec2d(f(self.x, other[0]),
f(self.y, other[1]))
else:
return Vec2d(f(self.x, other),
f(self.y, other))
def _r_o2(self, other, f):
"Any two-operator operation where the right operand is a Vec2d"
if (hasattr(other, "__getitem__")):
return Vec2d(f(other[0], self.x),
f(other[1], self.y))
else:
return Vec2d(f(other, self.x),
f(other, self.y))
def _io(self, other, f):
"inplace operator"
if (hasattr(other, "__getitem__")):
self.x = f(self.x, other[0])
self.y = f(self.y, other[1])
else:
self.x = f(self.x, other)
self.y = f(self.y, other)
return self
# Addition
def __add__(self, other):
if isinstance(other, Vec2d):
return Vec2d(self.x + other.x, self.y + other.y)
elif hasattr(other, "__getitem__"):
return Vec2d(self.x + other[0], self.y + other[1])
else:
return Vec2d(self.x + other, self.y + other)
__radd__ = __add__
def __iadd__(self, other):
if isinstance(other, Vec2d):
self.x += other.x
self.y += other.y
elif hasattr(other, "__getitem__"):
self.x += other[0]
self.y += other[1]
else:
self.x += other
self.y += other
return self
# Subtraction
def __sub__(self, other):
if isinstance(other, Vec2d):
return Vec2d(self.x - other.x, self.y - other.y)
elif (hasattr(other, "__getitem__")):
return Vec2d(self.x - other[0], self.y - other[1])
else:
return Vec2d(self.x - other, self.y - other)
def __rsub__(self, other):
if isinstance(other, Vec2d):
return Vec2d(other.x - self.x, other.y - self.y)
if (hasattr(other, "__getitem__")):
return Vec2d(other[0] - self.x, other[1] - self.y)
else:
return Vec2d(other - self.x, other - self.y)
def __isub__(self, other):
if isinstance(other, Vec2d):
self.x -= other.x
self.y -= other.y
elif (hasattr(other, "__getitem__")):
self.x -= other[0]
self.y -= other[1]
else:
self.x -= other
self.y -= other
return self
# Multiplication
def __mul__(self, other):
if isinstance(other, Vec2d):
return Vec2d(self.x*other.x, self.y*other.y)
if (hasattr(other, "__getitem__")):
return Vec2d(self.x*other[0], self.y*other[1])
else:
return Vec2d(self.x*other, self.y*other)
__rmul__ = __mul__
def __imul__(self, other):
if isinstance(other, Vec2d):
self.x *= other.x
self.y *= other.y
elif (hasattr(other, "__getitem__")):
self.x *= other[0]
self.y *= other[1]
else:
self.x *= other
self.y *= other
return self
# Division
def __div__(self, other):
return self._o2(other, operator.div)
def __rdiv__(self, other):
return self._r_o2(other, operator.div)
def __idiv__(self, other):
return self._io(other, operator.div)
def __floordiv__(self, other):
return self._o2(other, operator.floordiv)
def __rfloordiv__(self, other):
return self._r_o2(other, operator.floordiv)
def __ifloordiv__(self, other):
return self._io(other, operator.floordiv)
def __truediv__(self, other):
return self._o2(other, operator.truediv)
def __rtruediv__(self, other):
return self._r_o2(other, operator.truediv)
def __itruediv__(self, other):
return self._io(other, operator.floordiv)
# Modulo
def __mod__(self, other):
return self._o2(other, operator.mod)
def __rmod__(self, other):
return self._r_o2(other, operator.mod)
def __divmod__(self, other):
return self._o2(other, operator.divmod)
def __rdivmod__(self, other):
return self._r_o2(other, operator.divmod)
# Exponentation
def __pow__(self, other):
return self._o2(other, operator.pow)
def __rpow__(self, other):
return self._r_o2(other, operator.pow)
# Bitwise operators
def __lshift__(self, other):
return self._o2(other, operator.lshift)
def __rlshift__(self, other):
return self._r_o2(other, operator.lshift)
def __rshift__(self, other):
return self._o2(other, operator.rshift)
def __rrshift__(self, other):
return self._r_o2(other, operator.rshift)
def __and__(self, other):
return self._o2(other, operator.and_)
__rand__ = __and__
def __or__(self, other):
return self._o2(other, operator.or_)
__ror__ = __or__
def __xor__(self, other):
return self._o2(other, operator.xor)
__rxor__ = __xor__
# Unary operations
def __neg__(self):
return Vec2d(operator.neg(self.x), operator.neg(self.y))
def __pos__(self):
return Vec2d(operator.pos(self.x), operator.pos(self.y))
def __abs__(self):
return Vec2d(abs(self.x), abs(self.y))
def __invert__(self):
return Vec2d(-self.x, -self.y)
# vectory functions
def get_length_sqrd(self):
return self.x**2 + self.y**2
def get_length(self):
return math.sqrt(self.x**2 + self.y**2)
def __setlength(self, value):
length = self.get_length()
self.x *= value/length
self.y *= value/length
length = property(get_length, __setlength, None, "gets or sets the magnitude of the vector")
def rotate(self, angle_degrees):
radians = math.radians(angle_degrees)
cos = math.cos(radians)
sin = math.sin(radians)
x = self.x*cos - self.y*sin
y = self.x*sin + self.y*cos
self.x = x
self.y = y
def rotated(self, angle_degrees):
radians = math.radians(angle_degrees)
cos = math.cos(radians)
sin = math.sin(radians)
x = self.x*cos - self.y*sin
y = self.x*sin + self.y*cos
return Vec2d(x, y)
def get_angle(self):
if (self.get_length_sqrd() == 0):
return 0
return math.degrees(math.atan2(self.y, self.x))
def __setangle(self, angle_degrees):
self.x = self.length
self.y = 0
self.rotate(angle_degrees)
angle = property(get_angle, __setangle, None, "gets or sets the angle of a vector")
def get_angle_between(self, other):
cross = self.x*other[1] - self.y*other[0]
dot = self.x*other[0] + self.y*other[1]
return math.degrees(math.atan2(cross, dot))
def normalized(self):
length = self.length
if length != 0:
return self/length
return Vec2d(self)
def normalize_return_length(self):
length = self.length
if length != 0:
self.x /= length
self.y /= length
return length
def perpendicular(self):
return Vec2d(-self.y, self.x)
def perpendicular_normal(self):
length = self.length
if length != 0:
return Vec2d(-self.y/length, self.x/length)
return Vec2d(self)
def dot(self, other):
return float(self.x*other[0] + self.y*other[1])
def get_distance(self, other):
return math.sqrt((self.x - other[0])**2 + (self.y - other[1])**2)
def get_dist_sqrd(self, other):
return (self.x - other[0])**2 + (self.y - other[1])**2
def projection(self, other):
other_length_sqrd = other[0]*other[0] + other[1]*other[1]
projected_length_times_other_length = self.dot(other)
return other*(projected_length_times_other_length/other_length_sqrd)
def cross(self, other):
return self.x*other[1] - self.y*other[0]
def interpolate_to(self, other, range):
return Vec2d(self.x + (other[0] - self.x)*range, self.y + (other[1] - self.y)*range)
def convert_to_basis(self, x_vector, y_vector):
return Vec2d(self.dot(x_vector)/x_vector.get_length_sqrd(), self.dot(y_vector)/y_vector.get_length_sqrd())
def __getstate__(self):
return [self.x, self.y]
def __setstate__(self, dict):
self.x, self.y = dict