forked from matplotlib/interactive_tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
04-spline_fitter.py
313 lines (262 loc) · 9.44 KB
/
04-spline_fitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
"""
import scipy.interpolate as si
import numpy as np
from functools import reduce
import matplotlib.pyplot as plt
class TooFewPointsException(Exception):
...
class SplineFitter:
def click_event(self, event):
'''Extracts locations from the user interaction
Intended to be subscribed to 'button_press_event'
Parameters
----------
event : MouseEvent
The
'''
# stash the last event for debugging!
self.ev = event
# if shift is down, clear and bail
if event.key == 'shift':
self.clear()
return
# if no x or y data, bail
if event.xdata is None or event.ydata is None:
return
# if not in our Axes, bail
if event.inaxes is not self.ax:
return
# if left-click, append to points list
if event.button == 1:
self.pt_lst.append((event.xdata, event.ydata))
# if right-click, remove the closest point
elif event.button == 3:
self.remove_pt((event.xdata, event.ydata))
# re-draw (if needed)
self.redraw()
def remove_pt(self, loc):
"""Remove the nearest point.
Parameters
----------
loc : Tuple[float, float]
The x, y location of the cilck
"""
if len(self.pt_lst) > 0:
self.pt_lst.pop(np.argmin(list(map(lambda x:
np.sqrt((x[0] - loc[0]) ** 2 +
(x[1] - loc[1]) ** 2),
self.pt_lst))))
def redraw(self):
"""Redraw the canvas given the current set of points
"""
# get the current selected points
if len(self.pt_lst) > 0:
x, y = zip(*self.pt_lst)
else:
x, y = [], []
# and update the Line2D with the
self.pt_plot.set_xdata(x)
self.pt_plot.set_ydata(y)
# if we have more than 5 points, create a best-fit closed spline
if len(self.pt_lst) > 5:
SC = SplineCurve.from_pts(self.pt_lst, pix_err=self.pix_err)
new_pts = SC.q_phi_to_xy(0, np.linspace(0, 2 * np.pi, 1000))
center = SC.cntr
self.pt_lst.sort(key=lambda x:
np.arctan2(x[1] - center[1], x[0] - center[0]))
else:
new_pts = ([], [])
# and update the data in the spline Line2D objcet
self.sp_plot.set_xdata(new_pts[0])
self.sp_plot.set_ydata(new_pts[1])
self.canvas.draw_idle()
def __init__(self, ax, pix_err=1):
self.canvas = ax.get_figure().canvas
self.ax = ax
self.cid = None
self.pt_lst = []
self.pt_plot = ax.plot([], [], marker='o',
linestyle='none', zorder=5)[0]
self.sp_plot = ax.plot([], [], lw=3, color='r')[0]
self.pix_err = pix_err
self.connect_sf()
def clear(self):
'''Clears the points'''
self.pt_lst = []
self.redraw()
def connect_sf(self):
if self.cid is None:
self.cid = self.canvas.mpl_connect('button_press_event',
self.click_event)
def disconnect_sf(self):
if self.cid is not None:
self.canvas.mpl_disconnect(self.cid)
self.cid = None
@property
def points(self):
'''Returns the clicked points in the format the rest of the
code expects'''
return np.vstack(self.pt_lst).T
@property
def SplineCurve(self):
curve = SplineCurve.from_pts(self.pt_lst, pix_err=self.pix_err)
return curve
class SplineCurve:
'''
A class that wraps the scipy.interpolation objects
'''
@classmethod
def _get_spline(cls, points, pix_err=2, need_sort=True, **kwargs):
'''
Returns a closed spline for the points handed in.
Input is assumed to be a (2xN) array
=====
input
=====
:param points: the points to fit the spline to
:type points: a 2xN ndarray or a list of len =2 tuples
:param pix_err: the error is finding the spline in pixels
:param need_sort: if the points need to be sorted
or should be processed as-is
=====
output
=====
tck
The return data from the spline fitting
'''
if type(points) is np.ndarray:
# make into a list
pt_lst = zip(*points)
# get center
center = np.mean(points, axis=1).reshape(2, 1)
else:
# make a copy of the list
pt_lst = list(points)
# compute center
tmp_fun = lambda x, y: (x[0] + y[0], x[1] + y[1])
center = np.array(reduce(tmp_fun, pt_lst)).reshape(2, 1)
center /= len(pt_lst)
if len(pt_lst) < 5:
raise TooFewPointsException("not enough points")
if need_sort:
# sort the list by angle around center
pt_lst.sort(key=lambda x: np.arctan2(x[1] - center[1],
x[0] - center[0]))
# add first point to end because it is periodic (makes the
# interpolation code happy)
pt_lst.append(pt_lst[0])
# make array for handing in to spline fitting
pt_array = np.vstack(pt_lst).T
# do spline fitting
tck, u = si.splprep(pt_array, s=len(pt_lst) * (pix_err ** 2), per=True)
return tck
@classmethod
def from_pts(cls, new_pts, **kwargs):
tck = cls._get_spline(new_pts, **kwargs)
this = cls(tck)
this.raw_pts = new_pts
return this
def __init__(self, tck):
'''Use `from_pts` class method to construct instance
'''
self.tck = tck
self._cntr = None
self._circ = None
self._th_offset = None
def write_to_hdf(self, parent_group, name=None):
'''
Writes out the essential data (spline of central curve) to hdf file.
'''
if name is not None:
curve_group = parent_group.create_group(name)
else:
curve_group = parent_group
curve_group.attrs['tck0'] = self.tck[0]
curve_group.attrs['tck1'] = np.vstack(self.tck[1])
curve_group.attrs['tck2'] = self.tck[2]
@property
def circ(self):
'''returns a rough estimate of the circumference'''
if self._circ is None:
new_pts = si.splev(np.linspace(0, 1, 1000), self.tck, ext=2)
self._circ = np.sum(np.sqrt(np.sum(np.diff(new_pts, axis=1) ** 2,
axis=0)))
return self._circ
@property
def cntr(self):
'''returns a rough estimate of the circumference'''
if self._cntr is None:
new_pts = si.splev(np.linspace(0, 1, 1000), self.tck, ext=2)
self._cntr = np.mean(new_pts, 1)
return self._cntr
@property
def th_offset(self):
"""
The angle from the y-axis for (x, y) at `phi=0`
"""
if self._th_offset is None:
x, y = self.q_phi_to_xy(0, 0) - self.cntr.reshape(2, 1)
self._th_offset = np.arctan2(y, x)
return self._th_offset
@property
def tck0(self):
return self.tck[0]
@property
def tck1(self):
return self.tck[1]
@property
def tck2(self):
return self.tck[2]
def q_phi_to_xy(self, q, phi, cross=None):
'''Converts q, phi pairs -> x, y pairs. All other code that
does this should move to using this so that there is minimal
breakage when we change over to using additive q instead of
multiplicative'''
# make sure data is arrays
q = np.asarray(q)
# convert real units -> interpolation units
phi = np.mod(np.asarray(phi), 2 * np.pi) / (2 * np.pi)
# get the shapes
q_shape, phi_shape = [_.shape if (_.shape != () and
len(_) > 1) else None for
_ in (q, phi)]
# flatten everything
q = q.ravel()
phi = phi.ravel()
# sanity checks on shapes
if cross is False:
if phi_shape != q_shape:
raise ValueError("q and phi must have same" +
" dimensions to broadcast")
if cross is None:
if ((phi_shape is not None) and (q_shape is not None)
and (phi_shape == q_shape)):
cross = False
elif q_shape is None:
cross = False
q = q[0]
else:
cross = True
x, y = si.splev(phi, self.tck, ext=2)
dx, dy = si.splev(phi, self.tck, der=1, ext=2)
norm = np.sqrt(dx ** 2 + dy ** 2)
nx, ny = dy / norm, -dx / norm
# if cross, then
if cross:
data_out = zip(
*map(lambda q_: ((x + q_ * nx).reshape(phi_shape),
(y + q_ * ny).reshape(phi_shape)),
q)
)
else:
data_out = np.vstack([(x + q * nx).reshape(phi_shape),
(y + q * ny).reshape(phi_shape)])
return data_out
fig, ax = plt.subplots()
ax.set_title(
'left-click to add points, right-click to remove, shift-click to clear')
sp = SplineFitter(ax, .001)
plt.show()
# exercise (10 minutes)
# - add pick event to move a point