-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
78 lines (58 loc) · 2.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import pandas as pd
from config import DEBUG
from classes.data_frame_manager import DataFrameManager
from classes.mondrian import Mondrian
from datetime import datetime
import matplotlib.pyplot as plt
def plot_test(dfm, qi):
print('Started ananomyzation testing for different k values - this operation can take several minutes')
k_list = [ 2, 10, 20, 40, 60, 80, 100 ]
avg_list = [ ]
for k_value in k_list:
if DEBUG:
print('[DEBUG] - Started ananomyzation for k = %d' % k_value)
mondrian = Mondrian(k_value, dfm, qi)
mondrian.anonymize_aux()
avg_list.append(round(mondrian.get_normalized_avg_equivalence_class_size(), 2))
if DEBUG:
print('[DEBUG] - Finished ananomyzation for k = %d' % k_value)
fig, ax = plt.subplots(figsize=(12,8))
plt.plot(k_list, avg_list, marker='o')
plt.xlabel('k')
plt.ylabel('Normalized average equivalence class size metric (C AVG)')
plt.title('Normalized average equivalence class size metric (C AVG) vs k')
for index in range(len(k_list)):
ax.text(k_list[index], avg_list[index], avg_list[index])
plt.xticks(k_list)
plt.grid()
plt.savefig('data/plot_output.jpg')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--qi', help='Quasi Identifier', required=True, type=str, nargs='+')
parser.add_argument('--k', help='K-Anonimity', required=True, type=int)
parser.add_argument('--dataset', help='Dataset to be anonymized', required=True, type=str)
parser.add_argument('--rid', help='Remove id column', type=str, choices=['y', 'n'])
parser.add_argument('--plt', help='Test for different K saved in image', type=str, choices=['y', 'n'])
args = parser.parse_args()
k = args.k
df = pd.read_csv(args.dataset)
qi = args.qi
if 'y' == args.rid:
df.drop('id', inplace=True, axis=1)
if DEBUG:
print('[DEBUG] - ORIGINAL DATASET')
print(df)
dfm = DataFrameManager(df, qi)
mondrian = Mondrian(k, dfm, qi)
print('Starting anonymization for k = %d' % k)
start = datetime.now()
mondrian.anonymize_aux()
end = (datetime.now() - start).total_seconds()
print('Finished in %.2f seconds (%.3f minutes (%.2f hours))' % (end, end / 60, end / 60 / 60))
print('Normalized average equivalence class size metric AVG %.2f' % mondrian.get_normalized_avg_equivalence_class_size())
print('Writing anonymized data on file')
mondrian.write_on_file("data/output.csv")
# used to test anonymization for different k values
if 'y' == args.plt:
plot_test(dfm, qi)