-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2IWIL.py
341 lines (276 loc) · 12.9 KB
/
2IWIL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import argparse
from itertools import count
import gym
import gym.spaces
import scipy.optimize
import numpy as np
import math
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from models import *
from replay_memory import Memory
from running_state import ZFilter
from torch.autograd import Variable
from trpo import trpo_step
from utils import *
from loss import *
"""
2IWIL: proposed method (--weight)
GAIL (U+C): no need to specify option
GAIL (Reweight): use only confidence data (--weight --only)
GAIL (C): use only confidence data without reweighting (--weight --only --noconf)
"""
torch.utils.backcompat.broadcast_warning.enabled = True
torch.utils.backcompat.keepdim_warning.enabled = True
torch.set_default_tensor_type('torch.DoubleTensor')
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
parser = argparse.ArgumentParser(description='PyTorch actor-critic example')
parser.add_argument('--gamma', type=float, default=0.995, metavar='G',
help='discount factor (default: 0.995)')
parser.add_argument('--env', type=str, default="Reacher-v1", metavar='G',
help='name of the environment to run')
parser.add_argument('--tau', type=float, default=0.97, metavar='G',
help='gae (default: 0.97)')
parser.add_argument('--l2-reg', type=float, default=1e-3, metavar='G',
help='l2 regularization regression (default: 1e-3)')
parser.add_argument('--max-kl', type=float, default=1e-2, metavar='G',
help='max kl value (default: 1e-2)')
parser.add_argument('--damping', type=float, default=1e-1, metavar='G',
help='damping (default: 1e-1)')
parser.add_argument('--seed', type=int, default=1111, metavar='N',
help='random seed (default: 1111')
parser.add_argument('--batch-size', type=int, default=5000, metavar='N',
help='size of a single batch')
parser.add_argument('--log-interval', type=int, default=1, metavar='N',
help='interval between training status logs (default: 10)')
parser.add_argument('--fname', type=str, default='expert', metavar='F',
help='the file name to save trajectory')
parser.add_argument('--num-epochs', type=int, default=500, metavar='N',
help='number of epochs to train an expert')
parser.add_argument('--hidden-dim', type=int, default=100, metavar='H',
help='the size of hidden layers')
parser.add_argument('--lr', type=float, default=1e-3, metavar='L',
help='learning rate')
parser.add_argument('--weight', action='store_true',
help='consider confidence into loss')
parser.add_argument('--only', action='store_true',
help='only use labeled samples')
parser.add_argument('--noconf', action='store_true',
help='use only labeled data but without conf')
parser.add_argument('--vf-iters', type=int, default=30, metavar='V',
help='number of iterations of value function optimization iterations per each policy optimization step')
parser.add_argument('--vf-lr', type=float, default=3e-4, metavar='V',
help='learning rate of value network')
parser.add_argument('--noise', type=float, default=0.0, metavar='N')
parser.add_argument('--eval-epochs', type=int, default=3, metavar='E',
help='epochs to evaluate model')
parser.add_argument('--prior', type=float, default=0.2,
help='ratio of confidence data')
parser.add_argument('--traj-size', type=int, default=2000)
parser.add_argument('--ofolder', type=str, default='log')
parser.add_argument('--ifolder', type=str, default='demonstrations')
args = parser.parse_args()
env = gym.make(args.env)
num_inputs = env.observation_space.shape[0]
num_actions = env.action_space.shape[0]
env.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
policy_net = Policy(num_inputs, num_actions, args.hidden_dim)
value_net = Value(num_inputs, args.hidden_dim).to(device)
discriminator = Discriminator(num_inputs + num_actions, args.hidden_dim).to(device)
disc_criterion = nn.BCEWithLogitsLoss()
value_criterion = nn.MSELoss()
disc_optimizer = optim.Adam(discriminator.parameters(), args.lr)
value_optimizer = optim.Adam(value_net.parameters(), args.vf_lr)
def select_action(state):
state = torch.from_numpy(state).unsqueeze(0)
action_mean, _, action_std = policy_net(Variable(state))
action = torch.normal(action_mean, action_std)
return action
def update_params(batch):
rewards = torch.Tensor(batch.reward).to(device)
masks = torch.Tensor(batch.mask).to(device)
actions = torch.Tensor(np.concatenate(batch.action, 0)).to(device)
states = torch.Tensor(batch.state).to(device)
values = value_net(Variable(states))
returns = torch.Tensor(actions.size(0), 1).to(device)
deltas = torch.Tensor(actions.size(0), 1).to(device)
advantages = torch.Tensor(actions.size(0), 1).to(device)
prev_return = 0
prev_value = 0
prev_advantage = 0
for i in reversed(range(rewards.size(0))):
returns[i] = rewards[i] + args.gamma * prev_return * masks[i]
deltas[i] = rewards[i] + args.gamma * prev_value * masks[i] - values.data[i]
advantages[i] = deltas[i] + args.gamma * args.tau * prev_advantage * masks[i]
prev_return = returns[i, 0]
prev_value = values.data[i, 0]
prev_advantage = advantages[i, 0]
targets = Variable(returns)
batch_size = math.ceil(states.shape[0] / args.vf_iters)
idx = np.random.permutation(states.shape[0])
for i in range(args.vf_iters):
smp_idx = idx[i * batch_size: (i + 1) * batch_size]
smp_states = states[smp_idx, :]
smp_targets = targets[smp_idx, :]
value_optimizer.zero_grad()
value_loss = value_criterion(value_net(Variable(smp_states)), smp_targets)
value_loss.backward()
value_optimizer.step()
advantages = (advantages - advantages.mean()) / advantages.std()
action_means, action_log_stds, action_stds = policy_net(Variable(states.cpu()))
fixed_log_prob = normal_log_density(Variable(actions.cpu()), action_means, action_log_stds, action_stds).data.clone()
def get_loss():
action_means, action_log_stds, action_stds = policy_net(Variable(states.cpu()))
log_prob = normal_log_density(Variable(actions.cpu()), action_means, action_log_stds, action_stds)
action_loss = -Variable(advantages.cpu()) * torch.exp(log_prob - Variable(fixed_log_prob))
return action_loss.mean()
def get_kl():
mean1, log_std1, std1 = policy_net(Variable(states.cpu()))
mean0 = Variable(mean1.data)
log_std0 = Variable(log_std1.data)
std0 = Variable(std1.data)
kl = log_std1 - log_std0 + (std0.pow(2) + (mean0 - mean1).pow(2)) / (2.0 * std1.pow(2)) - 0.5
return kl.sum(1, keepdim=True)
trpo_step(policy_net, get_loss, get_kl, args.max_kl, args.damping)
def expert_reward(states, actions):
states = np.concatenate(states)
actions = np.concatenate(actions)
state_action = torch.Tensor(np.concatenate([states, actions], 1)).to(device)
return -F.logsigmoid(discriminator(state_action)).cpu().detach().numpy()
def evaluate(episode):
avg_reward = 0.0
for _ in range(args.eval_epochs):
state = env.reset()
for _ in range(10000): # Don't infinite loop while learning
state = torch.from_numpy(state).unsqueeze(0)
action, _, _ = policy_net(Variable(state))
action = action.data[0].numpy()
next_state, reward, done, _ = env.step(action)
avg_reward += reward
if done:
break
state = next_state
writer.log(episode, avg_reward / args.eval_epochs)
plabel = ''
try:
expert_traj = np.load("./{}/{}_mixture.npy".format(args.ifolder, args.env))
expert_conf = np.load("./{}/{}_mixture_conf.npy".format(args.ifolder, args.env))
expert_conf += (np.random.randn(*expert_conf.shape) * args.noise)
expert_conf = np.clip(expert_conf, 0.0, 1.0)
except:
print('Mixture demonstrations not loaded successfully.')
assert False
idx = np.random.choice(expert_traj.shape[0], args.traj_size, replace=False)
expert_traj = expert_traj[idx, :]
expert_conf = expert_conf[idx, :]
##### semi-confidence learning #####
num_label = int(args.prior * expert_conf.shape[0])
p_idx = np.random.permutation(expert_traj.shape[0])
expert_traj = expert_traj[p_idx, :]
expert_conf = expert_conf[p_idx, :]
if not args.only and args.weight:
labeled_traj = torch.Tensor(expert_traj[:num_label, :]).to(device)
unlabeled_traj = torch.Tensor(expert_traj[num_label:, :]).to(device)
label = torch.Tensor(expert_conf[:num_label, :]).to(device)
classifier = Classifier(expert_traj.shape[1], 40).to(device)
optim = optim.Adam(classifier.parameters(), 3e-4, amsgrad=True)
cu_loss = CULoss(expert_conf, beta=1-args.prior, non=True)
batch = min(128, labeled_traj.shape[0])
ubatch = int(batch / labeled_traj.shape[0] * unlabeled_traj.shape[0])
iters = 25000
for i in range(iters):
l_idx = np.random.choice(labeled_traj.shape[0], batch)
u_idx = np.random.choice(unlabeled_traj.shape[0], ubatch)
labeled = classifier(Variable(labeled_traj[l_idx, :]))
unlabeled = classifier(Variable(unlabeled_traj[u_idx, :]))
smp_conf = Variable(label[l_idx, :])
optim.zero_grad()
risk = cu_loss(smp_conf, labeled, unlabeled)
risk.backward()
optim.step()
if i % 1000 == 0:
print('iteration: {}\tcu loss: {:.3f}'.format(i, risk.data.item()))
classifier = classifier.eval()
expert_conf = torch.sigmoid(classifier(torch.Tensor(expert_traj).to(device))).detach().cpu().numpy()
expert_conf[:num_label, :] = label.cpu().detach().numpy()
elif args.only and args.weight:
expert_traj = expert_traj[:num_label, :]
expert_conf = expert_conf[:num_label, :]
if args.noconf:
expert_conf = np.ones(expert_conf.shape)
###################################
Z = expert_conf.mean()
if args.only:
fname = 'olabel'
else:
fname = ''
if args.noconf:
fname = 'nc'
writer = Writer(args.env, args.seed, args.weight, 'mixture', args.prior, args.traj_size, folder=args.ofolder, fname=fname, noise=args.noise)
for i_episode in range(args.num_epochs):
memory = Memory()
num_steps = 0
num_episodes = 0
reward_batch = []
states = []
actions = []
mem_actions = []
mem_mask = []
mem_next = []
while num_steps < args.batch_size:
state = env.reset()
reward_sum = 0
for t in range(10000): # Don't infinite loop while learning
action = select_action(state)
action = action.data[0].numpy()
states.append(np.array([state]))
actions.append(np.array([action]))
next_state, true_reward, done, _ = env.step(action)
reward_sum += true_reward
mask = 1
if done:
mask = 0
mem_mask.append(mask)
mem_next.append(next_state)
if done:
break
state = next_state
num_steps += (t-1)
num_episodes += 1
reward_batch.append(reward_sum)
evaluate(i_episode)
rewards = expert_reward(states, actions)
for idx in range(len(states)):
memory.push(states[idx][0], actions[idx], mem_mask[idx], mem_next[idx], \
rewards[idx][0])
batch = memory.sample()
update_params(batch)
### update discriminator ###
actions = torch.from_numpy(np.concatenate(actions))
states = torch.from_numpy(np.concatenate(states))
idx = np.random.randint(0, expert_traj.shape[0], num_steps)
expert_state_action = expert_traj[idx, :]
expert_pvalue = expert_conf[idx, :]
expert_state_action = torch.Tensor(expert_state_action).to(device)
expert_pvalue = torch.Tensor(expert_pvalue / Z).to(device)
state_action = torch.cat((states, actions), 1).to(device)
fake = discriminator(state_action)
real = discriminator(expert_state_action)
disc_optimizer.zero_grad()
weighted_loss = nn.BCEWithLogitsLoss(weight=expert_pvalue)
if args.weight:
disc_loss = disc_criterion(fake, torch.ones(states.shape[0], 1).to(device)) + \
weighted_loss(real, torch.zeros(expert_state_action.size(0), 1).to(device))
else:
disc_loss = disc_criterion(fake, torch.ones(states.shape[0], 1).to(device)) + \
disc_criterion(real, torch.zeros(expert_state_action.size(0), 1).to(device))
disc_loss.backward()
disc_optimizer.step()
############################
if i_episode % args.log_interval == 0:
print('Episode {}\tAverage reward: {:.2f}\tMax reward: {:.2f}\tLoss (disc): {:.2f}'.format(i_episode, np.mean(reward_batch), max(reward_batch), disc_loss.item()))