-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
135 lines (109 loc) · 3.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import math, os
import numpy as np
import torch
def normal_entropy(std):
var = std.pow(2)
entropy = 0.5 + 0.5 * torch.log(2 * var * math.pi)
return entropy.sum(1, keepdim=True)
def normal_log_density(x, mean, log_std, std):
var = std.pow(2)
log_density = -(x - mean).pow(2) / (
2 * var) - 0.5 * math.log(2 * math.pi) - log_std
return log_density.sum(1, keepdim=True)
def get_flat_params_from(model):
params = []
for param in model.parameters():
params.append(param.data.view(-1))
flat_params = torch.cat(params)
return flat_params
def set_flat_params_to(model, flat_params):
prev_ind = 0
for param in model.parameters():
flat_size = int(np.prod(list(param.size())))
param.data.copy_(
flat_params[prev_ind:prev_ind + flat_size].view(param.size()))
prev_ind += flat_size
def get_flat_grad_from(net, grad_grad=False):
grads = []
for param in net.parameters():
if grad_grad:
grads.append(param.grad.grad.view(-1))
else:
grads.append(param.grad.view(-1))
flat_grad = torch.cat(grads)
return flat_grad
class Writer(object):
def __init__(self, env, seed, weight, epoch, prior, traj_size, fname='', folder='PU_log', pbound='0.0', noise=0.0):
if weight:
label = '_weight'
else:
label = ''
if fname != '':
fname = '_{}'.format(fname)
if prior > 1e-6:
plabel = '_{:.4f}'.format(prior)
else:
plabel = ''
if pbound != '0.0':
pblabel = '_{}'.format(pbound)
else:
pblabel = ''
if noise < 1e-6:
nlabel = ''
else:
nlabel = '_noise{:.2f}'.format(noise)
self.fname = '{}_{}{}_{}{}_{}{}{}{}.csv'.format(env, seed, label, epoch, plabel, traj_size, pblabel, fname, nlabel)
self.folder = folder
if not os.path.isdir(self.folder):
os.makedirs(self.folder)
if os.path.exists('{}/{}'.format(self.folder, self.fname)):
print('Overwrite {}/{}!'.format(self.folder, self.fname))
os.remove('{}/{}'.format(self.folder, self.fname))
def log(self, epoch, reward):
with open(self.folder + '/' + self.fname, 'a') as f:
f.write('{},{}\n'.format(epoch, reward))
class NewWriter(object):
def __init__(self, env, seed, weight, epoch, prior, traj_size, use_cgan, fname='', folder='PU_log', pbound='0.0', noise=0.0):
if weight:
label = '_weight'
else:
label = ''
if fname != '':
fname = '_{}'.format(fname)
if prior > 1e-6:
plabel = '_{:.4f}'.format(prior)
else:
plabel = ''
if pbound != '0.0':
pblabel = '_{}'.format(pbound)
else:
pblabel = ''
if noise < 1e-6:
nlabel = ''
else:
nlabel = '_noise{:.2f}'.format(noise)
self.folder = folder
self.pfolder = os.path.join(self.folder, env)
if use_cgan:
til = 'cgan_classifier'
else:
til = 'PU_classifier'
self.subfolder = '{}-{}'.format(til, seed)
self.log_folder = os.path.join(self.pfolder, self.subfolder)
self.fname = "progress.csv"
if not os.path.isdir(self.log_folder):
os.makedirs(self.log_folder)
if os.path.exists('{}/{}'.format(self.log_folder, self.fname)):
print('Overwrite {}/{}!'.format(self.log_folder, self.fname))
os.remove('{}/{}'.format(self.log_folder, self.fname))
def log(self, epoch, reward):
with open(self.log_folder + '/' + self.fname, 'a') as f:
f.write('{},{}\n'.format(epoch, reward))
def digitize(arr, unit):
if unit < 1e-6:
return arr
return np.round(arr / unit) * unit
def save_model(model, name, folder):
if not os.path.isdir(folder):
os.makedirs(folder)
torch.save(model.state_dict(), folder + name)