-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDCC.cpp
857 lines (772 loc) · 24.8 KB
/
DCC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*
* © 2020, Chris Harlow. All rights reserved.
* © 2020, Harald Barth
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "DCC.h"
#include "DCCWaveform.h"
#include "DIAG.h"
// This module is responsible for converting API calls into
// messages to be sent to the waveform generator.
// It has no visibility of the hardware, timers, interrupts
// nor of the waveform issues such as preambles, start bits checksums or cutouts.
//
// Nor should it have to deal with JMRI responsess other than the OK/FAIL
// or cv value returned. I will move that back to the JMRI interface later
//
// The interface to the waveform generator is narrowed down to merely:
// Scheduling a message on the prog or main track using a function
// Obtaining ACKs from the prog track using a function
// There are no volatiles here.
const byte FN_GROUP_1 = 0x01;
const byte FN_GROUP_2 = 0x02;
const byte FN_GROUP_3 = 0x04;
const byte FN_GROUP_4 = 0x08;
const byte FN_GROUP_5 = 0x10;
void DCC::begin(MotorDriver *mainDriver, MotorDriver *progDriver, byte timerNumber)
{
DCCWaveform::begin(mainDriver, progDriver, timerNumber);
}
void DCC::setThrottle(uint16_t cab, uint8_t tSpeed, bool tDirection)
{
byte speedCode = (tSpeed & 0x7F) + tDirection * 128;
setThrottle2(cab, speedCode);
// retain speed for loco reminders
updateLocoReminder(cab, speedCode);
}
void DCC::setThrottle2(uint16_t cab, byte speedCode)
{
uint8_t b[4];
uint8_t nB = 0;
// DIAG(F("\nsetSpeedInternal %d %x"),cab,speedCode);
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = SET_SPEED; // 128-step speed control byte
b[nB++] = speedCode; // for encoding see setThrottle
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
}
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2)
{
// DIAG(F("\nsetFunctionInternal %d %x %x"),cab,byte1,byte2);
byte b[4];
byte nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
if (byte1 != 0)
b[nB++] = byte1;
b[nB++] = byte2;
DCCWaveform::mainTrack.schedulePacket(b, nB, 3); // send packet 3 times
}
uint8_t DCC::getThrottleSpeed(int cab)
{
int reg = lookupSpeedTable(cab);
if (reg < 0)
return -1;
return speedTable[reg].speedCode & 0x7F;
}
bool DCC::getThrottleDirection(int cab)
{
int reg = lookupSpeedTable(cab);
if (reg < 0)
return false;
return (speedTable[reg].speedCode & 0x80) != 0;
}
// Set function to value on or off
void DCC::setFn(int cab, byte functionNumber, bool on)
{
if (cab <= 0 || functionNumber > 28)
return;
int reg = lookupSpeedTable(cab);
if (reg < 0)
return;
// Take care of functions:
// Set state of function
unsigned long funcmask = (1UL << functionNumber);
if (on)
{
speedTable[reg].functions |= funcmask;
}
else
{
speedTable[reg].functions &= ~funcmask;
}
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
return;
}
// Change function according to how button was pressed,
// typically in WiThrottle.
// Returns new state or -1 if nothing was changed.
int DCC::changeFn(int cab, byte functionNumber, bool pressed)
{
int funcstate = -1;
if (cab <= 0 || functionNumber > 28)
return funcstate;
int reg = lookupSpeedTable(cab);
if (reg < 0)
return funcstate;
// Take care of functions:
// Imitate how many command stations do it: Button press is
// toggle but for F2 where it is momentary
unsigned long funcmask = (1UL << functionNumber);
if (functionNumber == 2)
{
// turn on F2 on press and off again at release of button
if (pressed)
{
speedTable[reg].functions |= funcmask;
funcstate = 1;
}
else
{
speedTable[reg].functions &= ~funcmask;
funcstate = 0;
}
}
else
{
// toggle function on press, ignore release
if (pressed)
{
speedTable[reg].functions ^= funcmask;
}
funcstate = speedTable[reg].functions & funcmask;
}
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
return funcstate;
}
// Set the group flag to say we have touched the particular group.
// A group will be reminded only if it has been touched.
void DCC::updateGroupflags(byte &flags, int functionNumber)
{
byte groupMask;
if (functionNumber <= 4)
groupMask = FN_GROUP_1;
else if (functionNumber <= 8)
groupMask = FN_GROUP_2;
else if (functionNumber <= 12)
groupMask = FN_GROUP_3;
else if (functionNumber <= 20)
groupMask = FN_GROUP_4;
else
groupMask = FN_GROUP_5;
flags |= groupMask;
}
void DCC::setAccessory(int address, byte number, bool activate)
{
// use masks to detect wrong values and do nothing
if (address != (address & 511))
return;
if (number != (number & 3))
return;
byte b[2];
b[0] = address % 64 + 128; // first byte is of the form 10AAAAAA, where AAAAAA represent 6 least signifcant bits of accessory address
b[1] = ((((address / 64) % 8) << 4) + (number % 4 << 1) + activate % 2) ^ 0xF8; // second byte is of the form 1AAACDDD, where C should be 1, and the least significant D represent activate/deactivate
DCCWaveform::mainTrack.schedulePacket(b, 2, 4); // Repeat the packet four times
}
void DCC::writeCVByteMain(int cab, int cv, byte bValue)
{
byte b[5];
byte nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(WRITE_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = bValue;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue)
{
byte b[5];
byte nB = 0;
bValue = bValue % 2;
bNum = bNum % 8;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(WRITE_BIT_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = WRITE_BIT | (bValue ? BIT_ON : BIT_OFF) | bNum;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
void DCC::setProgTrackSyncMain(bool on)
{
DCCWaveform::progTrackSyncMain = on;
}
const ackOp PROGMEM WRITE_BIT0_PROG[] = {
BASELINE,
W0, WACK,
V0, WACK, // validate bit is 0
ITC1, // if acked, callback(1)
FAIL // callback (-1)
};
const ackOp PROGMEM WRITE_BIT1_PROG[] = {
BASELINE,
W1, WACK,
V1, WACK, // validate bit is 1
ITC1, // if acked, callback(1)
FAIL // callback (-1)
};
const ackOp PROGMEM VERIFY_BIT0_PROG[] = {
BASELINE,
V0, WACK, // validate bit is 0
ITC0, // if acked, callback(0)
V1, WACK, // validate bit is 1
ITC1,
FAIL // callback (-1)
};
const ackOp PROGMEM VERIFY_BIT1_PROG[] = {
BASELINE,
V1, WACK, // validate bit is 1
ITC1, // if acked, callback(1)
V0, WACK,
ITC0,
FAIL // callback (-1)
};
const ackOp PROGMEM READ_BIT_PROG[] = {
BASELINE,
V1, WACK, // validate bit is 1
ITC1, // if acked, callback(1)
V0, WACK, // validate bit is zero
ITC0, // if acked callback 0
FAIL // bit not readable
};
const ackOp PROGMEM WRITE_BYTE_PROG[] = {
BASELINE,
WB, WACK, // Write
VB, WACK, // validate byte
ITC1, // if ok callback (1)
FAIL // callback (-1)
};
const ackOp PROGMEM VERIFY_BYTE_PROG[] = {
BASELINE,
VB, WACK, // validate byte
ITCB, // if ok callback value
STARTMERGE, //clear bit and byte values ready for merge pass
// each bit is validated against 0 and the result inverted in MERGE
// this is because there tend to be more zeros in cv values than ones.
// There is no need for one validation as entire byte is validated at the end
V0, WACK, MERGE, // read and merge first tested bit (7)
ITSKIP, // do small excursion if there was no ack
SETBIT, (ackOp)7,
V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7)
SETBIT, (ackOp)6, // and abort whole test if not else continue with bit (6)
SKIPTARGET,
V0, WACK, MERGE, // read and merge second tested bit (6)
V0, WACK, MERGE, // read and merge third tested bit (5) ...
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCB, // verify merged byte and return it if acked ok
FAIL};
const ackOp PROGMEM READ_CV_PROG[] = {
BASELINE,
STARTMERGE, //clear bit and byte values ready for merge pass
// each bit is validated against 0 and the result inverted in MERGE
// this is because there tend to be more zeros in cv values than ones.
// There is no need for one validation as entire byte is validated at the end
V0, WACK, MERGE, // read and merge first tested bit (7)
ITSKIP, // do small excursion if there was no ack
SETBIT, (ackOp)7,
V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7)
SETBIT, (ackOp)6, // and abort whole test if not else continue with bit (6)
SKIPTARGET,
V0, WACK, MERGE, // read and merge second tested bit (6)
V0, WACK, MERGE, // read and merge third tested bit (5) ...
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCB, // verify merged byte and return it if acked ok
FAIL}; // verification failed
const ackOp PROGMEM LOCO_ID_PROG[] = {
BASELINE,
SETCV, (ackOp)29,
SETBIT, (ackOp)5,
V0, WACK, ITSKIP, // Skip to SKIPTARGET if bit 5 of CV29 is zero
V1, WACK, NAKFAIL, // fast fail if no loco on track
// Long locoid
SETCV, (ackOp)17, // CV 17 is part of locoid
STARTMERGE,
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
STASHLOCOID, // keep stashed cv 17 for later
// Read 2nd part from CV 18
SETCV, (ackOp)18,
STARTMERGE,
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
COMBINELOCOID, // Combile byte with stash to make long locoid and callback
// ITSKIP Skips to here if CV 29 bit 5 was zero. so read CV 1 and return that
SKIPTARGET,
SETCV, (ackOp)1,
STARTMERGE,
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCB, // verify merged byte and callback
FAIL};
// On the following prog-track functions blocking defaults to false.
// blocking=true forces the API to block, waiting for the response and invoke the callback BEFORE returning.
// During that wait, other parts of the system will be unresponsive.
// blocking =false means the callback will be called some time after the API returns (typically a few tenths of a second)
// but that would be very inconvenient in a Wifi situaltion where the stream becomes
// unuavailable immediately after the API rerturns.
void DCC::writeCVByte(int cv, byte byteValue, ACK_CALLBACK callback, bool blocking)
{
ackManagerSetup(cv, byteValue, WRITE_BYTE_PROG, callback, blocking);
}
void DCC::writeCVBit(int cv, byte bitNum, bool bitValue, ACK_CALLBACK callback, bool blocking)
{
if (bitNum >= 8)
callback(-1);
else
ackManagerSetup(cv, bitNum, bitValue ? WRITE_BIT1_PROG : WRITE_BIT0_PROG, callback, blocking);
}
void DCC::verifyCVByte(int cv, byte byteValue, ACK_CALLBACK callback, bool blocking)
{
ackManagerSetup(cv, byteValue, VERIFY_BYTE_PROG, callback, blocking);
}
void DCC::verifyCVBit(int cv, byte bitNum, bool bitValue, ACK_CALLBACK callback, bool blocking)
{
if (bitNum >= 8)
callback(-1);
else
ackManagerSetup(cv, bitNum, bitValue ? VERIFY_BIT1_PROG : VERIFY_BIT0_PROG, callback, blocking);
}
void DCC::readCVBit(int cv, byte bitNum, ACK_CALLBACK callback, bool blocking)
{
if (bitNum >= 8)
callback(-1);
else
ackManagerSetup(cv, bitNum, READ_BIT_PROG, callback, blocking);
}
void DCC::readCV(int cv, ACK_CALLBACK callback, bool blocking)
{
ackManagerSetup(cv, 0, READ_CV_PROG, callback, blocking);
}
void DCC::getLocoId(ACK_CALLBACK callback, bool blocking)
{
ackManagerSetup(0, 0, LOCO_ID_PROG, callback, blocking);
}
void DCC::forgetLoco(int cab)
{ // removes any speed reminders for this loco
int reg = lookupSpeedTable(cab);
if (reg >= 0)
speedTable[reg].loco = 0;
}
void DCC::forgetAllLocos()
{ // removes all speed reminders
for (int i = 0; i < MAX_LOCOS; i++)
speedTable[i].loco = 0;
}
byte DCC::loopStatus = 0;
void DCC::loop()
{
DCCWaveform::loop(); // power overload checks
ackManagerLoop(false); // maintain prog track ack manager
issueReminders();
}
void DCC::issueReminders()
{
// if the main track transmitter still has a pending packet, skip this time around.
if (DCCWaveform::mainTrack.packetPending)
return;
// This loop searches for a loco in the speed table starting at nextLoco and cycling back around
for (int reg = 0; reg < MAX_LOCOS; reg++)
{
int slot = reg + nextLoco;
if (slot >= MAX_LOCOS)
slot -= MAX_LOCOS;
if (speedTable[slot].loco > 0)
{
// have found the next loco to remind
// issueReminder will return true if this loco is completed (ie speed and functions)
if (issueReminder(slot))
nextLoco = slot + 1;
return;
}
}
}
bool DCC::issueReminder(int reg)
{
unsigned long functions = speedTable[reg].functions;
int loco = speedTable[reg].loco;
byte flags = speedTable[reg].groupFlags;
switch (loopStatus)
{
case 0:
// DIAG(F("\nReminder %d speed %d"),loco,speedTable[reg].speedCode);
setThrottle2(loco, speedTable[reg].speedCode);
break;
case 1: // remind function group 1 (F0-F4)
if (flags & FN_GROUP_1)
setFunctionInternal(loco, 0, 128 | ((functions >> 1) & 0x0F) | ((functions & 0x01) << 4));
break;
case 2: // remind function group 2 F5-F8
if (flags & FN_GROUP_2)
setFunctionInternal(loco, 0, 176 + ((functions >> 5) & 0x0F));
break;
case 3: // remind function group 3 F9-F12
if (flags & FN_GROUP_3)
setFunctionInternal(loco, 0, 160 + ((functions >> 9) & 0x0F));
break;
case 4: // remind function group 4 F13-F20
if (flags & FN_GROUP_4)
setFunctionInternal(loco, 222, ((functions >> 13) & 0xFF));
flags &= ~FN_GROUP_4; // dont send them again
break;
case 5: // remind function group 5 F21-F28
if (flags & FN_GROUP_5)
setFunctionInternal(loco, 223, ((functions >> 21) & 0xFF));
flags &= ~FN_GROUP_5; // dont send them again
break;
}
loopStatus++;
// if we reach status 6 then this loco is done so
// reset status to 0 for next loco and return true so caller
// moves on to next loco.
if (loopStatus > 5)
loopStatus = 0;
return loopStatus == 0;
}
///// Private helper functions below here /////////////////////
byte DCC::cv1(byte opcode, int cv)
{
cv--;
return (highByte(cv) & (byte)0x03) | opcode;
}
byte DCC::cv2(int cv)
{
cv--;
return lowByte(cv);
}
int DCC::lookupSpeedTable(int locoId)
{
// determine speed reg for this loco
int firstEmpty = MAX_LOCOS;
int reg;
for (reg = 0; reg < MAX_LOCOS; reg++)
{
if (speedTable[reg].loco == locoId)
break;
if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS)
firstEmpty = reg;
}
if (reg == MAX_LOCOS)
reg = firstEmpty;
if (reg >= MAX_LOCOS)
{
DIAG(F("\nToo many locos\n"));
return -1;
}
if (reg == firstEmpty)
{
speedTable[reg].loco = locoId;
speedTable[reg].speedCode = 128; // default direction forward
speedTable[reg].groupFlags = 0;
speedTable[reg].functions = 0;
}
return reg;
}
void DCC::updateLocoReminder(int loco, byte speedCode)
{
if (loco == 0)
{
// broadcast stop/estop but dont change direction
for (int reg = 0; reg < MAX_LOCOS; reg++)
{
speedTable[reg].speedCode = (speedTable[reg].speedCode & 0x80) | (speedCode & 0x7f);
}
return;
}
// determine speed reg for this loco
int reg = lookupSpeedTable(loco);
if (reg >= 0)
speedTable[reg].speedCode = speedCode;
}
DCC::LOCO DCC::speedTable[MAX_LOCOS];
int DCC::nextLoco = 0;
//ACK MANAGER
ackOp const *DCC::ackManagerProg;
byte DCC::ackManagerByte;
byte DCC::ackManagerStash;
int DCC::ackManagerCv;
byte DCC::ackManagerBitNum;
bool DCC::ackReceived;
ACK_CALLBACK DCC::ackManagerCallback;
void DCC::ackManagerSetup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback, bool blocking)
{
ackManagerCv = cv;
ackManagerProg = program;
ackManagerByte = byteValueOrBitnum;
ackManagerBitNum = byteValueOrBitnum;
ackManagerCallback = callback;
if (blocking)
ackManagerLoop(blocking);
}
const byte RESET_MIN = 8; // tuning of reset counter before sending message
// checkRessets return true if the caller should yield back to loop and try later.
bool DCC::checkResets(bool blocking, uint8_t numResets)
{
if (blocking)
{
// must block waiting for restest to be issued
while (DCCWaveform::progTrack.sentResetsSincePacket < numResets)
;
return false; // caller need not yield
}
return DCCWaveform::progTrack.sentResetsSincePacket < numResets;
}
void DCC::ackManagerLoop(bool blocking)
{
while (ackManagerProg)
{
byte opcode = pgm_read_byte_near(ackManagerProg);
if (Diag::ACK)
DIAG(F("\nackManagerLoop:ackManagerProg:opcode [%d] blocking mode [%d]"), opcode, blocking);
// breaks from this switch will step to next prog entry
// returns from this switch will stay on same entry
// (typically waiting for a reset counter or ACK waiting, or when all finished.)
// if blocking then we must ONLY return AFTER callback issued
switch (opcode)
{
case BASELINE:
if (DCCWaveform::progTrack.getPowerMode() == POWERMODE::OFF)
{
if (Diag::ACK)
DIAG(F("\nAuto Prog power on"));
DCCWaveform::progTrack.setPowerMode(POWERMODE::ON);
DCCWaveform::progTrack.sentResetsSincePacket = 0;
DCCWaveform::progTrack.autoPowerOff = true;
// grbba chnages
if (!blocking) return;
// return;
///////////////
}
if (checkResets(blocking, DCCWaveform::progTrack.autoPowerOff ? 20 : 3))
return;
DCCWaveform::progTrack.setAckBaseline();
break;
case W0: // write 0 bit
case W1: // write 1 bit
{
if (checkResets(blocking, RESET_MIN))
return;
if (Diag::ACK)
DIAG(F("\nW%d cv=%d bit=%d"), opcode == W1, ackManagerCv, ackManagerBitNum);
byte instruction = WRITE_BIT | (opcode == W1 ? BIT_ON : BIT_OFF) | ackManagerBitNum;
byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
DCCWaveform::progTrack.setAckPending();
}
break;
case WB: // write byte
{
if (checkResets(blocking, RESET_MIN))
return;
if (Diag::ACK)
DIAG(F("\nWB cv=%d value=%d"), ackManagerCv, ackManagerByte);
byte message[] = {cv1(WRITE_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
DCCWaveform::progTrack.setAckPending();
}
break;
case VB: // Issue validate Byte packet
{
if (checkResets(blocking, RESET_MIN))
return;
if (Diag::ACK)
DIAG(F("\nVB cv=%d value=%d"), ackManagerCv, ackManagerByte);
byte message[] = {cv1(VERIFY_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
DCCWaveform::progTrack.setAckPending();
}
break;
case V0:
case V1: // Issue validate bit=0 or bit=1 packet
{
if (checkResets(blocking, RESET_MIN))
return;
if (Diag::ACK)
DIAG(F("\nV%d cv=%d bit=%d"), opcode == V1, ackManagerCv, ackManagerBitNum);
byte instruction = VERIFY_BIT | (opcode == V0 ? BIT_OFF : BIT_ON) | ackManagerBitNum;
byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
DCCWaveform::progTrack.setAckPending();
}
break;
case WACK: // wait for ack (or absence of ack)
{
// grbba
if (Diag::ACK)
DIAG(F("\nWACK begin blocking mode [%d]"), blocking);
byte ackState = 2; // keep polling
if (blocking)
{
// grbba
if (Diag::ACK)
DIAG(F("\nWACK ackState in blocking before while : [%d]"), ackState);
while (ackState == 2) {
ackState = DCCWaveform::progTrack.getAck();
// grbba
// if (Diag::ACK)
// DIAG(F("\nWACK ackState in blocking -in- while : [%d]"), ackState);
}
// grbba
if (Diag::ACK)
DIAG(F("\nWACK ackState in blocking after while : [%d]"), ackState);
}
else
{
ackState = DCCWaveform::progTrack.getAck();
if (ackState == 2)
return; // keep polling
}
ackReceived = ackState == 1;
// grbba
if (Diag::ACK)
DIAG(F("\nWACK end : ok"));
break; // we have a genuine ACK result
}
case ITC0:
case ITC1: // If True Callback(0 or 1) (if prevous WACK got an ACK)
if (ackReceived)
{
ackManagerProg = NULL; // all done now
callback(opcode == ITC0 ? 0 : 1);
return;
}
break;
case ITCB: // If True callback(byte)
if (ackReceived)
{
ackManagerProg = NULL; // all done now
callback(ackManagerByte);
return;
}
break;
case NAKFAIL: // If nack callback(-1)
if (!ackReceived)
{
ackManagerProg = NULL; // all done now
callback(-1);
return;
}
break;
case FAIL: // callback(-1)
ackManagerProg = NULL;
callback(-1);
return;
case STARTMERGE:
ackManagerBitNum = 7;
ackManagerByte = 0;
break;
case MERGE: // Merge previous Validate zero wack response with byte value and update bit number (use for reading CV bytes)
ackManagerByte <<= 1;
// ackReceived means bit is zero.
if (!ackReceived)
ackManagerByte |= 1;
ackManagerBitNum--;
break;
case SETBIT:
ackManagerProg++;
ackManagerBitNum = pgm_read_byte_near(ackManagerProg);
break;
case SETCV:
ackManagerProg++;
ackManagerCv = pgm_read_byte_near(ackManagerProg);
break;
case STASHLOCOID:
ackManagerStash = ackManagerByte; // stash value from CV17
break;
case COMBINELOCOID:
// ackManagerStash is cv17, ackManagerByte is CV 18
ackManagerProg = NULL;
callback(ackManagerByte + ((ackManagerStash - 192) << 8));
return;
case ITSKIP:
if (!ackReceived)
break;
// SKIP opcodes until SKIPTARGET found
while (opcode != SKIPTARGET)
{
ackManagerProg++;
opcode = pgm_read_byte_near(ackManagerProg);
}
break;
case SKIPTARGET:
break;
default:
DIAG(F("\n!! ackOp %d FAULT!!"), opcode);
ackManagerProg = NULL;
callback(-1);
return;
} // end of switch
ackManagerProg++;
}
}
void DCC::callback(int value)
{
if (DCCWaveform::progTrack.autoPowerOff)
{
if (Diag::ACK)
DIAG(F("\nAuto Prog power off"));
DCCWaveform::progTrack.doAutoPowerOff();
}
if (Diag::ACK)
DIAG(F("\nCallback(%d)\n"), value);
(ackManagerCallback)(value);
}
void DCC::displayCabList(Print *stream)
{
int used = 0;
for (int reg = 0; reg < MAX_LOCOS; reg++)
{
if (speedTable[reg].loco > 0)
{
used++;
StringFormatter::send(stream, F("\ncab=%d, speed=%d, dir=%c "),
speedTable[reg].loco, speedTable[reg].speedCode & 0x7f, (speedTable[reg].speedCode & 0x80) ? 'F' : 'R');
}
}
StringFormatter::send(stream, F("\nUsed=%d, max=%d\n"), used, MAX_LOCOS);
}