-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathSource.cpp
778 lines (640 loc) · 24.9 KB
/
Source.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
#define _CRT_SECURE_NO_WARNINGS
#include <windows.h> // for bitmap headers. Sorry non windows people!
#include <stdint.h>
#include <vector>
#include <random>
#include <array>
#include <thread>
#include <complex>
#include <atomic>
typedef uint8_t uint8;
typedef int64_t int64;
const float c_pi = 3.14159265359f;
// settings
const size_t c_imageSize = 256;
const bool c_doDFT = true;
const float c_blurThresholdPercent = 0.005f; // lower numbers give higher quality results, but take longer. This is 0.5%
const float c_numBlurs = 5;
//======================================================================================
struct SImageData
{
SImageData ()
: m_width(0)
, m_height(0)
{ }
size_t m_width;
size_t m_height;
size_t m_pitch;
std::vector<uint8> m_pixels;
};
//======================================================================================
struct SColor
{
SColor (uint8 _R = 0, uint8 _G = 0, uint8 _B = 0)
: R(_R), G(_G), B(_B)
{ }
inline void Set (uint8 _R, uint8 _G, uint8 _B)
{
R = _R;
G = _G;
B = _B;
}
uint8 B, G, R;
};
//======================================================================================
struct SImageDataFloat
{
SImageDataFloat()
: m_width(0)
, m_height(0)
{ }
size_t m_width;
size_t m_height;
std::vector<float> m_pixels;
};
//======================================================================================
struct SImageDataComplex
{
SImageDataComplex ()
: m_width(0)
, m_height(0)
{ }
size_t m_width;
size_t m_height;
std::vector<std::complex<float>> m_pixels;
};
//======================================================================================
std::complex<float> DFTPixel (const SImageData &srcImage, size_t K, size_t L)
{
std::complex<float> ret(0.0f, 0.0f);
for (size_t x = 0; x < srcImage.m_width; ++x)
{
for (size_t y = 0; y < srcImage.m_height; ++y)
{
// Get the pixel value (assuming greyscale) and convert it to [0,1] space
const uint8 *src = &srcImage.m_pixels[(y * srcImage.m_pitch) + x * 3];
float grey = float(src[0]) / 255.0f;
// Add to the sum of the return value
float v = float(K * x) / float(srcImage.m_width);
v += float(L * y) / float(srcImage.m_height);
ret += std::complex<float>(grey, 0.0f) * std::polar<float>(1.0f, -2.0f * c_pi * v);
}
}
return ret;
}
//======================================================================================
void ImageDFT (const SImageData &srcImage, SImageDataComplex &destImage)
{
// NOTE: this function assumes srcImage is greyscale, so works on only the red component of srcImage.
// ImageToGrey() will convert an image to greyscale.
// size the output dft data
destImage.m_width = srcImage.m_width;
destImage.m_height = srcImage.m_height;
destImage.m_pixels.resize(destImage.m_width*destImage.m_height);
size_t numThreads = std::thread::hardware_concurrency();
//if (numThreads > 0)
//numThreads = numThreads - 1;
std::vector<std::thread> threads;
threads.resize(numThreads);
printf("Doing DFT with %zu threads...\n", numThreads);
// calculate 2d dft (brute force, not using fast fourier transform) multithreadedly
std::atomic<size_t> nextRow(0);
for (std::thread& t : threads)
{
t = std::thread(
[&] ()
{
size_t row = nextRow.fetch_add(1);
bool reportProgress = (row == 0);
int lastPercent = -1;
while (row < srcImage.m_height)
{
// calculate the DFT for every pixel / frequency in this row
for (size_t x = 0; x < srcImage.m_width; ++x)
{
destImage.m_pixels[row * destImage.m_width + x] = DFTPixel(srcImage, x, row);
}
// report progress if we should
if (reportProgress)
{
int percent = int(100.0f * float(row) / float(srcImage.m_height));
if (lastPercent != percent)
{
lastPercent = percent;
printf(" \rDFT: %i%%", lastPercent);
}
}
// go to the next row
row = nextRow.fetch_add(1);
}
}
);
}
for (std::thread& t : threads)
t.join();
printf("\n");
}
//======================================================================================
void GetMagnitudeData (const SImageDataComplex& srcImage, SImageData& destImage)
{
// size the output image
destImage.m_width = srcImage.m_width;
destImage.m_height = srcImage.m_height;
destImage.m_pitch = 4 * ((srcImage.m_width * 24 + 31) / 32);
destImage.m_pixels.resize(destImage.m_pitch*destImage.m_height);
// get floating point magnitude data
std::vector<float> magArray;
magArray.resize(srcImage.m_width*srcImage.m_height);
float maxmag = 0.0f;
for (size_t x = 0; x < srcImage.m_width; ++x)
{
for (size_t y = 0; y < srcImage.m_height; ++y)
{
// Offset the information by half width & height in the positive direction.
// This makes frequency 0 (DC) be at the image origin, like most diagrams show it.
int k = (x + (int)srcImage.m_width / 2) % (int)srcImage.m_width;
int l = (y + (int)srcImage.m_height / 2) % (int)srcImage.m_height;
const std::complex<float> &src = srcImage.m_pixels[l*srcImage.m_width + k];
float mag = std::abs(src);
if (mag > maxmag)
maxmag = mag;
magArray[y*srcImage.m_width + x] = mag;
}
}
if (maxmag == 0.0f)
maxmag = 1.0f;
const float c = 255.0f / log(1.0f+maxmag);
// normalize the magnitude data and send it back in [0, 255]
for (size_t x = 0; x < srcImage.m_width; ++x)
{
for (size_t y = 0; y < srcImage.m_height; ++y)
{
float src = c * log(1.0f + magArray[y*srcImage.m_width + x]);
uint8 magu8 = uint8(src);
uint8* dest = &destImage.m_pixels[y*destImage.m_pitch + x * 3];
dest[0] = magu8;
dest[1] = magu8;
dest[2] = magu8;
}
}
}
//======================================================================================
bool ImageSave (const SImageData &image, const char *fileName)
{
// open the file if we can
FILE *file;
file = fopen(fileName, "wb");
if (!file) {
printf("Could not save %s\n", fileName);
return false;
}
// make the header info
BITMAPFILEHEADER header;
BITMAPINFOHEADER infoHeader;
header.bfType = 0x4D42;
header.bfReserved1 = 0;
header.bfReserved2 = 0;
header.bfOffBits = 54;
infoHeader.biSize = 40;
infoHeader.biWidth = (LONG)image.m_width;
infoHeader.biHeight = (LONG)image.m_height;
infoHeader.biPlanes = 1;
infoHeader.biBitCount = 24;
infoHeader.biCompression = 0;
infoHeader.biSizeImage = (DWORD) image.m_pixels.size();
infoHeader.biXPelsPerMeter = 0;
infoHeader.biYPelsPerMeter = 0;
infoHeader.biClrUsed = 0;
infoHeader.biClrImportant = 0;
header.bfSize = infoHeader.biSizeImage + header.bfOffBits;
// write the data and close the file
fwrite(&header, sizeof(header), 1, file);
fwrite(&infoHeader, sizeof(infoHeader), 1, file);
fwrite(&image.m_pixels[0], infoHeader.biSizeImage, 1, file);
fclose(file);
return true;
}
//======================================================================================
bool ImageLoad (const char *fileName, SImageData& imageData)
{
// open the file if we can
FILE *file;
file = fopen(fileName, "rb");
if (!file)
return false;
// read the headers if we can
BITMAPFILEHEADER header;
BITMAPINFOHEADER infoHeader;
if (fread(&header, sizeof(header), 1, file) != 1 ||
fread(&infoHeader, sizeof(infoHeader), 1, file) != 1 ||
header.bfType != 0x4D42 || infoHeader.biBitCount != 24)
{
fclose(file);
return false;
}
// read in our pixel data if we can. Note that it's in BGR order, and width is padded to the next power of 4
imageData.m_pixels.resize(infoHeader.biSizeImage);
fseek(file, header.bfOffBits, SEEK_SET);
if (fread(&imageData.m_pixels[0], imageData.m_pixels.size(), 1, file) != 1)
{
fclose(file);
return false;
}
imageData.m_width = infoHeader.biWidth;
imageData.m_height = infoHeader.biHeight;
imageData.m_pitch = 4 * ((imageData.m_width * 24 + 31) / 32);
fclose(file);
return true;
}
//======================================================================================
void ImageInit (SImageData& image, size_t width, size_t height)
{
image.m_width = width;
image.m_height = height;
image.m_pitch = 4 * ((width * 24 + 31) / 32);
image.m_pixels.resize(image.m_pitch * image.m_height);
std::fill(image.m_pixels.begin(), image.m_pixels.end(), 0);
}
//======================================================================================
void ImageFloatInit (SImageDataFloat& image, size_t width, size_t height)
{
image.m_width = width;
image.m_height = height;
image.m_pixels.resize(image.m_width * image.m_height);
std::fill(image.m_pixels.begin(), image.m_pixels.end(), 0.0f);
}
//======================================================================================
int PixelsNeededForSigma (float sigma)
{
// returns the number of pixels needed to represent a gaussian kernal that has values
// down to the threshold amount. A gaussian function technically has values everywhere
// on the image, but the threshold lets us cut it off where the pixels contribute to
// only small amounts that aren't as noticeable.
return int(floor(1.0f + 2.0f * sqrtf(-2.0f * sigma * sigma * log(c_blurThresholdPercent)))) + 1;
}
//======================================================================================
float Gaussian (float sigma, float x)
{
return expf(-(x*x) / (2.0f * sigma*sigma));
}
//======================================================================================
float GaussianSimpsonIntegration (float sigma, float a, float b)
{
return
((b - a) / 6.0f) *
(Gaussian(sigma, a) + 4.0f * Gaussian(sigma, (a + b) / 2.0f) + Gaussian(sigma, b));
}
//======================================================================================
std::vector<float> GaussianKernelIntegrals (float sigma, int taps)
{
std::vector<float> ret;
float total = 0.0f;
for (int i = 0; i < taps; ++i)
{
float x = float(i) - float(taps / 2);
float value = GaussianSimpsonIntegration(sigma, x - 0.5f, x + 0.5f);
ret.push_back(value);
total += value;
}
// normalize it
for (unsigned int i = 0; i < ret.size(); ++i)
{
ret[i] /= total;
}
return ret;
}
//======================================================================================
const float* GetPixelWrapAround (const SImageDataFloat& image, int x, int y)
{
if (x >= (int)image.m_width)
{
x = x % (int)image.m_width;
}
else
{
while (x < 0)
x += (int)image.m_width;
}
if (y >= (int)image.m_height)
{
y = y % (int)image.m_height;
}
else
{
while (y < 0)
y += (int)image.m_height;
}
return &image.m_pixels[(y * image.m_width) + x];
}
//======================================================================================
void ImageGaussianBlur (const SImageDataFloat& srcImage, SImageDataFloat &destImage, float xblursigma, float yblursigma, unsigned int xblursize, unsigned int yblursize)
{
// allocate space for copying the image for destImage and tmpImage
ImageFloatInit(destImage, srcImage.m_width, srcImage.m_height);
SImageDataFloat tmpImage;
ImageFloatInit(tmpImage, srcImage.m_width, srcImage.m_height);
// horizontal blur from srcImage into tmpImage
{
auto row = GaussianKernelIntegrals(xblursigma, xblursize);
int startOffset = -1 * int(row.size() / 2);
for (int y = 0; y < tmpImage.m_height; ++y)
{
for (int x = 0; x < tmpImage.m_width; ++x)
{
float blurredPixel = 0.0f;
for (unsigned int i = 0; i < row.size(); ++i)
{
const float *pixel = GetPixelWrapAround(srcImage, x + startOffset + i, y);
blurredPixel += pixel[0] * row[i];
}
float *destPixel = &tmpImage.m_pixels[y * tmpImage.m_width + x];
destPixel[0] = blurredPixel;
}
}
}
// vertical blur from tmpImage into destImage
{
auto row = GaussianKernelIntegrals(yblursigma, yblursize);
int startOffset = -1 * int(row.size() / 2);
for (int y = 0; y < destImage.m_height; ++y)
{
for (int x = 0; x < destImage.m_width; ++x)
{
float blurredPixel = 0.0f;
for (unsigned int i = 0; i < row.size(); ++i)
{
const float *pixel = GetPixelWrapAround(tmpImage, x, y + startOffset + i);
blurredPixel += pixel[0] * row[i];
}
float *destPixel = &destImage.m_pixels[y * destImage.m_width + x];
destPixel[0] = blurredPixel;
}
}
}
}
//======================================================================================
void SaveImageFloatAsBMP (const SImageDataFloat& imageFloat, const char* fileName)
{
printf("\n%s\n", fileName);
// init the image
SImageData image;
ImageInit(image, imageFloat.m_width, imageFloat.m_height);
// write the data to the image
const float* srcData = &imageFloat.m_pixels[0];
for (size_t y = 0; y < image.m_height; ++y)
{
SColor* pixel = (SColor*)&image.m_pixels[y*image.m_pitch];
for (size_t x = 0; x < image.m_width; ++x)
{
uint8 value = uint8(255.0f * srcData[0]);
pixel->Set(value, value, value);
++pixel;
++srcData;
}
}
// save the image
ImageSave(image, fileName);
// also save a DFT of the image
if (c_doDFT)
{
SImageDataComplex dftData;
ImageDFT(image, dftData);
SImageData DFTMagImage;
GetMagnitudeData(dftData, DFTMagImage);
char buffer[256];
sprintf(buffer, "%s.mag.bmp", fileName);
ImageSave(DFTMagImage, buffer);
}
}
//======================================================================================
void NormalizeHistogram (SImageDataFloat& image)
{
struct SHistogramHelper
{
float value;
size_t pixelIndex;
};
static std::vector<SHistogramHelper> pixels;
pixels.resize(image.m_width * image.m_height);
// put all the pixels into the array
for (size_t i = 0, c = image.m_width * image.m_height; i < c; ++i)
{
pixels[i].value = image.m_pixels[i];
pixels[i].pixelIndex = i;
}
// shuffle the pixels to randomly order ties. not as big a deal with floating point pixel values though
static std::random_device rd;
static std::mt19937 rng(rd());
std::shuffle(pixels.begin(), pixels.end(), rng);
// sort the pixels by value
std::sort(
pixels.begin(),
pixels.end(),
[] (const SHistogramHelper& a, const SHistogramHelper& b)
{
return a.value < b.value;
}
);
// use the pixel's place in the array as the new value, and write it back to the image
for (size_t i = 0, c = image.m_width * image.m_height; i < c; ++i)
{
float value = float(i) / float(c - 1);
image.m_pixels[pixels[i].pixelIndex] = value;
}
}
//======================================================================================
void BlueNoiseTest (float blurSigma)
{
// calculate the blur size from our sigma
int blurSize = PixelsNeededForSigma(blurSigma) | 1;
// setup the randon number generator
std::random_device rd;
std::mt19937 rng(rd());
std::uniform_real_distribution<float> dist(0.0f, 1.0f);
// generate some white noise
SImageDataFloat noise;
ImageFloatInit(noise, c_imageSize, c_imageSize);
for (float& v : noise.m_pixels)
{
v = dist(rng);
}
// save off the starting white noise
const char* baseFileName = "bluenoise_%i_%zu.bmp";
char fileName[256];
sprintf(fileName, baseFileName, int(blurSigma * 100.0f), 0);
SaveImageFloatAsBMP(noise, fileName);
// iteratively high pass filter and rescale histogram to the 0 to 1 range
SImageDataFloat blurredImage;
for (size_t blurIndex = 0; blurIndex < c_numBlurs; ++blurIndex)
{
// get a low passed version of the current image
ImageGaussianBlur(noise, blurredImage, blurSigma, blurSigma, blurSize, blurSize);
// subtract the low passed version to get the high passed version
for (size_t pixelIndex = 0; pixelIndex < c_imageSize * c_imageSize; ++pixelIndex)
noise.m_pixels[pixelIndex] -= blurredImage.m_pixels[pixelIndex];
// put all pixels between 0.0 and 1.0 again
NormalizeHistogram(noise);
// save this image
sprintf(fileName, baseFileName, int(blurSigma * 100.0f), blurIndex + 1);
SaveImageFloatAsBMP(noise, fileName);
}
}
//======================================================================================
void RedNoiseTest (float blurSigma)
{
// calculate the blur size from our sigma
int blurSize = PixelsNeededForSigma(blurSigma) | 1;
// setup the randon number generator
std::random_device rd;
std::mt19937 rng(rd());
std::uniform_real_distribution<float> dist(0.0f, 1.0f);
// generate some white noise
SImageDataFloat noise;
ImageFloatInit(noise, c_imageSize, c_imageSize);
for (float& v : noise.m_pixels)
{
v = dist(rng);
}
// save off the starting white noise
const char* baseFileName = "rednoise_%i_%zu.bmp";
char fileName[256];
sprintf(fileName, baseFileName, int(blurSigma * 100.0f), 0);
SaveImageFloatAsBMP(noise, fileName);
// iteratively high pass filter and rescale histogram to the 0 to 1 range
SImageDataFloat blurredImage;
for (size_t blurIndex = 0; blurIndex < c_numBlurs; ++blurIndex)
{
// get a low passed version of the current image
ImageGaussianBlur(noise, blurredImage, blurSigma, blurSigma, blurSize, blurSize);
// set noise image to the low passed version
noise.m_pixels = blurredImage.m_pixels;
// put all pixels between 0.0 and 1.0 again
NormalizeHistogram(noise);
// save this image
sprintf(fileName, baseFileName, int(blurSigma * 100.0f), blurIndex + 1);
SaveImageFloatAsBMP(noise, fileName);
}
}
//======================================================================================
void BandPassTest (float blurSigma1, float blurSigma2)
{
// calculate the blur size from our sigma
int blurSize1 = PixelsNeededForSigma(blurSigma1) | 1;
int blurSize2 = PixelsNeededForSigma(blurSigma2) | 1;
// setup the randon number generator
std::random_device rd;
std::mt19937 rng(rd());
std::uniform_real_distribution<float> dist(0.0f, 1.0f);
// generate some white noise
SImageDataFloat noise;
ImageFloatInit(noise, c_imageSize, c_imageSize);
for (float& v : noise.m_pixels)
{
v = dist(rng);
}
// save off the starting white noise
const char* baseFileName = "bandpass_%i_%i_%zu.bmp";
char fileName[256];
sprintf(fileName, baseFileName, int(blurSigma1 * 100.0f), int(blurSigma2 * 100.0f), 0);
SaveImageFloatAsBMP(noise, fileName);
// iteratively high pass filter and rescale histogram to the 0 to 1 range
SImageDataFloat blurredImage1;
SImageDataFloat blurredImage2;
for (size_t blurIndex = 0; blurIndex < c_numBlurs; ++blurIndex)
{
// get two low passed versions of the current image
ImageGaussianBlur(noise, blurredImage1, blurSigma1, blurSigma1, blurSize1, blurSize1);
ImageGaussianBlur(noise, blurredImage2, blurSigma2, blurSigma2, blurSize2, blurSize2);
// subtract one low passed version from the other
for (size_t pixelIndex = 0; pixelIndex < c_imageSize * c_imageSize; ++pixelIndex)
noise.m_pixels[pixelIndex] = blurredImage1.m_pixels[pixelIndex] - blurredImage2.m_pixels[pixelIndex];
// put all pixels between 0.0 and 1.0 again
NormalizeHistogram(noise);
// save this image
sprintf(fileName, baseFileName, int(blurSigma1 * 100.0f), int(blurSigma2 * 100.0f), blurIndex + 1);
SaveImageFloatAsBMP(noise, fileName);
}
}
//======================================================================================
void BandStopTest (float blurSigma1, float blurSigma2)
{
// calculate the blur size from our sigma
int blurSize1 = PixelsNeededForSigma(blurSigma1) | 1;
int blurSize2 = PixelsNeededForSigma(blurSigma2) | 1;
// setup the randon number generator
std::random_device rd;
std::mt19937 rng(rd());
std::uniform_real_distribution<float> dist(0.0f, 1.0f);
// generate some white noise
SImageDataFloat noise;
ImageFloatInit(noise, c_imageSize, c_imageSize);
for (float& v : noise.m_pixels)
{
v = dist(rng);
}
// save off the starting white noise
const char* baseFileName = "bandstop_%i_%i_%zu.bmp";
char fileName[256];
sprintf(fileName, baseFileName, int(blurSigma1 * 100.0f), int(blurSigma2 * 100.0f), 0);
SaveImageFloatAsBMP(noise, fileName);
// iteratively high pass filter and rescale histogram to the 0 to 1 range
SImageDataFloat blurredImage1;
SImageDataFloat blurredImage2;
for (size_t blurIndex = 0; blurIndex < c_numBlurs; ++blurIndex)
{
// get two low passed versions of the current image
ImageGaussianBlur(noise, blurredImage1, blurSigma1, blurSigma1, blurSize1, blurSize1);
ImageGaussianBlur(noise, blurredImage2, blurSigma2, blurSigma2, blurSize2, blurSize2);
// subtract one low passed version from the other to get the pandpass noise, and subtract that from the original noise to get the band stop noise
for (size_t pixelIndex = 0; pixelIndex < c_imageSize * c_imageSize; ++pixelIndex)
noise.m_pixels[pixelIndex] -= (blurredImage1.m_pixels[pixelIndex] - blurredImage2.m_pixels[pixelIndex]);
// put all pixels between 0.0 and 1.0 again
NormalizeHistogram(noise);
// save this image
sprintf(fileName, baseFileName, int(blurSigma1 * 100.0f), int(blurSigma2 * 100.0f), blurIndex + 1);
SaveImageFloatAsBMP(noise, fileName);
}
}
//======================================================================================
int main (int argc, char ** argv)
{
BlueNoiseTest(0.5f);
BlueNoiseTest(1.0f);
BlueNoiseTest(2.0f);
RedNoiseTest(0.5f);
RedNoiseTest(1.0f);
RedNoiseTest(2.0f);
BandPassTest(0.5f, 2.0f);
BandStopTest(0.5f, 2.0f);
return 0;
}
/*
TODO:
* TODOs in code
? how to demo the quality of this noise?
* compare image and DFT to blue noise image and DFT
* show thresholding (animation?) of noise textures
* some kind of actual sampling thing or something?
* show whether noise tiles
* also just use it for greyscale image dithering?
* links
* https://bartwronski.com/2016/10/30/dithering-part-two-golden-ratio-sequence-blue-noise-and-highpass-and-remap/
* https://gpuopen.com/vdr-follow-up-fine-art-of-film-grain/
* gaussian blur: https://blog.demofox.org/2015/08/19/gaussian-blur/
* DFT / IDFT: https://blog.demofox.org/2016/07/28/fourier-transform-and-inverse-of-images/
* https://www.solidangle.com/research/dither_abstract.pdf
Blog:
DONE:
* note: you can't make blue noise by making white noise, doing DFT, modifying stuff, then doing IDFT. that is filtering it and is equivelant to what you are doing here.
* digital alchemy? turning white noise into other noise
* note that blur needs to wrap around!
* note: timothy lottes says to use sort that's more efficient for fixed sizes keys (radix sort), and fits it in 64 bits instead of a struct.
* Note: likely want a better algorithm if doing offline. But this algorithm is pretty easy
* Nathan Reed said the band pass noise looks like Perlin noise. google for more info? ryg said it also helps for mipmapping
* different blurs are different quality low pass filters.
* box blur = low quality
* gaussian blur = better.
* best = sync.
* animated gifs showing the noise and their DFT evolve?
* maybe also animate blue noise w/ golden ratio, and mention that in this post? vs a flip book of blue noise? (NO!)
*/