-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathJsonEvaluater.py
87 lines (74 loc) · 3.52 KB
/
JsonEvaluater.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import zipfile
import json
import csv
from types import SimpleNamespace as Namespace
import numpy as np
import os
def json_zip_to_csv(zip_file_name):
csv_name = zip_file_name[:-3] + "csv"
data = []
with zipfile.ZipFile(zip_file_name) as zip_file:
for i, file_name in enumerate(zip_file.namelist()):
if not file_name.endswith(".json"):
print("Not a json file: {}".format(file_name))
continue
data.append((process_json_file(zip_file, file_name)))
print(len(zip_file.namelist()))
write_data_to_csv(csv_name, data)
def write_data_to_csv(filename, data):
headers = ["people", "people_points", "faces", "face_points", "hands", "hand_points"]
with open(filename, "w+", encoding="utf8", newline="") as csv_file:
writer = csv.writer(csv_file, delimiter="\t")
writer.writerow(headers)
for data_values in data:
writer.writerow(data_values)
def process_json_file(zip, file_name):
with zip.open(file_name, "r") as json_file:
json_obj = json.loads(json_file.read(), object_hook=lambda d: Namespace(**d))
people = json_obj.people
people_count = len(people)
recognized_faces = people_count
recognized_hands = people_count * 2
total_pose_points = 0
total_face_points = 0
total_hand_points = 0
for person in people:
pose_key_points = count_key_points(person.pose_keypoints_2d, 0.05)
face_key_points = count_key_points(person.face_keypoints_2d, 0.4)
left_hand_key_points = count_key_points(person.hand_left_keypoints_2d, 0.2)
right_hand_key_points = count_key_points(person.hand_right_keypoints_2d, 0.2)
if face_key_points == 0:
recognized_faces -= 1
if left_hand_key_points == 0:
recognized_hands -= 1
if right_hand_key_points == 0:
recognized_hands -= 1
total_pose_points += pose_key_points
total_face_points += face_key_points
total_hand_points += left_hand_key_points + right_hand_key_points
return people_count, total_pose_points, recognized_faces, total_face_points, recognized_hands, total_hand_points
def count_key_points(key_points_array, threshold=0.0):
return np.count_nonzero(np.array(key_points_array[0::3]) > threshold)
def evaluate_csvs(small_file, large_file):
small_data = np.loadtxt(small_file, delimiter="\t", skiprows=1)
large_data = np.loadtxt(large_file, delimiter="\t", skiprows=1)
small_data_count = small_data.shape[0]
large_data_count = large_data.shape[0]
if large_data_count != small_data_count:
print("not same size: small-{} and large-{}".format(small_data.shape, large_data.shape))
more_large = large_data_count > small_data_count
if more_large:
large_data = large_data[:small_data_count]
else:
small_data = small_data[:large_data_count]
total_gain = np.sum(large_data, axis=0) / np.sum(small_data, axis=0)
gain = np.divide(large_data, small_data, out=np.zeros_like(small_data), where=small_data != 0)
average_gain = np.mean(gain, axis=0)
print("total_gain is \t\t{}".format(total_gain))
print("average_gain is \t{}".format(average_gain))
if __name__ == '__main__':
path = "./data/"
for file_name in os.listdir(path):
if file_name.endswith(".zip"):
json_zip_to_csv(path + file_name)
evaluate_csvs(path + "2905_small_json.csv", path + "2905_HD_reduced_to_-1_368.csv")