-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathget_images.py
426 lines (402 loc) · 19.2 KB
/
get_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
create by cv调包侠
支持实时标注和视频标注和图片的文件夹标注
github:https://github.com/CVUsers/Auto_maker 欢迎star~
公众号在readme~欢迎加入社区.
"""
import sys
import cv2
from os import getcwd
import os
from os import getcwd
from xml.etree import ElementTree as ET
import numpy as np
import argparse
import random
# pip install opencv-contrib-python
# 定义一个创建一级分支object的函数
def create_object(root, xi=None, yi=None, xa=None, ya=None, obj_name=None, mutils=None): # 参数依次,树根,xmin,ymin,xmax,ymax
if mutils:
for index, xyxy in enumerate(mutils):
_object = ET.SubElement(root, 'object') # 创建一级分支object
name = ET.SubElement(_object, 'name') # 创建二级分支
name.text = str(obj_name[index])
pose = ET.SubElement(_object, 'pose')
pose.text = 'Unspecified'
truncated = ET.SubElement(_object, 'truncated')
truncated.text = '0'
difficult = ET.SubElement(_object, 'difficult')
difficult.text = '0'
bndbox = ET.SubElement(_object, 'bndbox') # 创建bndbox
xmin = ET.SubElement(bndbox, 'xmin')
xmin.text = '%s' % xyxy[0]
ymin = ET.SubElement(bndbox, 'ymin')
ymin.text = '%s' % xyxy[1]
xmax = ET.SubElement(bndbox, 'xmax')
xmax.text = '%s' % xyxy[2]
ymax = ET.SubElement(bndbox, 'ymax')
ymax.text = '%s' % xyxy[3]
else:
_object = ET.SubElement(root, 'object') # 创建一级分支object
name = ET.SubElement(_object, 'name') # 创建二级分支
name.text = str(obj_name)
pose = ET.SubElement(_object, 'pose')
pose.text = 'Unspecified'
truncated = ET.SubElement(_object, 'truncated')
truncated.text = '0'
difficult = ET.SubElement(_object, 'difficult')
difficult.text = '0'
bndbox = ET.SubElement(_object, 'bndbox') # 创建bndbox
xmin = ET.SubElement(bndbox, 'xmin')
xmin.text = '%s' % xi
ymin = ET.SubElement(bndbox, 'ymin')
ymin.text = '%s' % yi
xmax = ET.SubElement(bndbox, 'xmax')
xmax.text = '%s' % xa
ymax = ET.SubElement(bndbox, 'ymax')
ymax.text = '%s' % ya
# 创建xml文件的函数
def create_tree(image_name, imgdir, h, w):
global annotation
annotation = ET.Element('annotation') # 创建树根annotation
folder = ET.SubElement(annotation, 'folder') # 创建一级分支folder
folder.text = (imgdir) # 添加folder标签内容
filename = ET.SubElement(annotation, 'filename') # 创建一级分支filename
filename.text = image_name
path = ET.SubElement(annotation, 'path') # 创建一级分支path
path.text = getcwd() + '\{}\{}'.format(imgdir, image_name) # 用于返回当前工作目录
source = ET.SubElement(annotation, 'source') # 创建一级分支source
database = ET.SubElement(source, 'database') # 创建source下的二级分支database
database.text = 'Unknown'
size = ET.SubElement(annotation, 'size') # 创建一级分支size
width = ET.SubElement(size, 'width') # 创建size下的二级分支图像的宽、高及depth
width.text = str(w)
height = ET.SubElement(size, 'height')
height.text = str(h)
depth = ET.SubElement(size, 'depth')
depth.text = '3'
segmented = ET.SubElement(annotation, 'segmented') # 创建一级分支segmented
segmented.text = '0'
# 自动寻找下一张保存图片的名称
def find_max_name(classes, mix=False):
max = 0
for i in os.listdir('images/'):
if '_' not in i:
continue
elif 'mix' in i and i.split('_')[1] == classes:
if int(i.split('_')[2].split('.')[0]) > max:
max = int(i.split('_')[2].split('.')[0])
elif i.split('_')[0] == classes:
if int(i.split('_')[1].split('.')[0]) > max:
max = int(i.split('_')[1].split('.')[0])
return max
# 使用mix_up贴图
def mix_roi_img(mix, img, x=None, y=None, w=None, h=None, mutil_mix=False, mix_xyxy=None):
global counter
if os.path.isdir(mix) and not mutil_mix:
i = random.choice(os.listdir(mix))
img_back = cv2.imread(os.path.join(mix, i))
try:
img_back = cv2.resize(img_back, (640, 480))
except:
print(f'{os.path.join(mix, i)} connot open it!')
rows, cols, channels = img.shape # rows,cols最后一定要是前景图片的,后面遍历图片需要用到
center = [x, y] # 在新背景图片中的位置
for i in range(cols):
for j in range(rows):
if center[0] + i < 640 and center[1] + j < 480:
img_back[center[1] + j, center[0] + i] = img[j, i] # 此处替换颜色,为BGR通道
cv2.imshow(f'mix_{i}', img_back)
cv2.waitKey(20)
counter += 1
if counter % 20 == 0:
cv2.destroyAllWindows()
return img_back
elif os.path.isdir(mix) and mutil_mix:
i = random.choice(os.listdir(mix))
img_back = cv2.imread(os.path.join(mix, i))
try:
img_back = cv2.resize(img_back, (640, 480))
except:
print(f'{os.path.join(mix, i)} connot open it!')
for index, img_single in enumerate(img):
rows, cols, channels = img_single.shape # rows,cols最后一定要是前景图片的,后面遍历图片需要用到
center = [mix_xyxy[index][0], mix_xyxy[index][1]] # 在新背景图片中的位置
for i in range(cols):
for j in range(rows):
if center[0] + i < 640 and center[1] + j < 480:
img_back[center[1] + j, center[0] + i] = img_single[j, i] # 此处替换颜色,为BGR通道
cv2.imshow(f'mix_{i}', img_back)
cv2.waitKey(20)
counter += 1
if counter % 20 == 0:
cv2.destroyAllWindows()
return img_back
# 保存图片和xml
def saveROIImg(frame, img, xmin, ymin, xmax, ymax, obj_name, flag=False, mix=False):
global counter, saveimg
name = find_max_name(obj_name, mix)
H, W = frame.shape[0], frame.shape[-2]
if flag:
name += 1
print("Saving image:", f'mix_{obj_name}_' + str(name) + ".jpg", xmin, ymin, xmax, ymax)
cv2.imwrite(path + f'mix_{obj_name}_' + str(name) + ".jpg", mix)
cv2.rectangle(mix, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
cv2.imwrite(test_path + f'mix_{obj_name}_' + str(name) + ".jpg", mix)
create_tree(f'mix_{obj_name}_' + str(name) + '.jpg ', 'images', H, W)
create_object(annotation, xmin, ymin, xmax, ymax, obj_name)
cv2.waitKey(50)
tree = ET.ElementTree(annotation)
tree.write('.\Annotations\{}.xml'.format(f'mix_{obj_name}_' + str(name)))
return
name += 1
print("Saving image:", f'{obj_name}_' + str(name) + ".jpg", xmin, ymin, xmax, ymax)
cv2.imwrite(path + f'{obj_name}_' + str(name) + ".jpg", img)
cv2.imwrite(test_path + f'{obj_name}_' + str(name) + ".jpg", frame)
cv2.imshow('images', img)
create_tree(f'{obj_name}_' + str(name) + '.jpg ', 'images', H, W)
create_object(annotation, xmin, ymin, xmax, ymax, obj_name)
cv2.waitKey(20)
tree = ET.ElementTree(annotation)
tree.write('.\Annotations\{}.xml'.format(f'{obj_name}_' + str(name)))
# 视频与实时标注入口(单类别)
def run_on_video(source, mix=False):
saveimg = False
mix_img = False
wd = getcwd()
tracker = OPENCV_OBJECT_TRACKERS[args.tracker]() # 定义追踪器
intBB = None
vs = cv2.VideoCapture(source)
while True:
frame = vs.read()
frame = frame[1]
frame = cv2.resize(frame, (640, 480))
frame = cv2.flip(frame, 3)
frame1 = frame.copy()
(H, W) = frame.shape[:2]
if frame is None:
break
if intBB is not None:
(success, box) = tracker.update(frame)
if success:
(x, y, w, h) = [int(v) for v in box]
if mix:
Scaling_probability = random.randint(args.Scaling_probability[0] * 10,
args.Scaling_probability[1] * 10) / 10
mix_frame = cv2.resize(frame1[y:y + h, x:x + w],
(int(w * Scaling_probability), int(h * Scaling_probability)))
w_, h_ = int(w * Scaling_probability), int(h * Scaling_probability)
mix_img = mix_roi_img(mix, mix_frame, x, y, w_, h_)
if saveimg:
saveROIImg(frame, frame1, x, y, x + w_, y + h_, obj_name, flag=True, mix=mix_img)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
if saveimg:
saveROIImg(frame, frame1, x, y, x + w, y + h, obj_name)
cv2.imshow('frame', frame)
key = cv2.waitKey(20) & 0xFF
if key == ord('s'):
tracker = OPENCV_OBJECT_TRACKERS[args.tracker]()
intBB = None
intBB = cv2.selectROI('frame', frame, fromCenter=False, showCrosshair=True)
print('now class is:', obj_name)
tracker.init(frame, intBB)
elif key == ord('b'):
saveimg = True
elif key == 27:
cv2.destroyAllWindows()
vs.release()
break
# 图片单类别标注
def run_on_images(source, mix=False):
saveimg = False
wd = getcwd()
tracker = OPENCV_OBJECT_TRACKERS[args.tracker]()
intBB = None
intBB1 = None
for i in os.listdir(source):
frame = cv2.imread(os.path.join(source, i))
frame = cv2.resize(frame, (640, 480))
frame = cv2.flip(frame, 3)
frame1 = frame.copy()
(H, W) = frame.shape[:2]
if frame is None:
break
if intBB is not None:
(success, box) = tracker.update(frame)
if success:
(x, y, w, h) = [int(v) for v in box]
if mix:
Scaling_probability = random.randint(args.Scaling_probability[0] * 10,
args.Scaling_probability[1] * 10) / 10
try:
mix_frame = cv2.resize(frame1[y:y + h, x:x + w],
(int(w * Scaling_probability), int(h * Scaling_probability)))
w_, h_ = int(w * Scaling_probability), int(h * Scaling_probability)
mix_img = mix_roi_img(mix, mix_frame, x, y, w_, h_)
if saveimg:
saveROIImg(frame, frame1, x, y, x + w_, y + h_, obj_name, flag=True, mix=mix_img)
except:
pass
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
if saveimg:
saveROIImg(frame, frame1, x, y, x + w, y + h, obj_name)
cv2.imshow('frame', frame)
key = cv2.waitKey(20) & 0xFF
if key == ord('s'):
tracker = OPENCV_OBJECT_TRACKERS[args.tracker]()
tracker1 = OPENCV_OBJECT_TRACKERS[args.tracker]()
intBB = None
intBB1 = None
intBB = cv2.selectROI('frame', frame, fromCenter=False, showCrosshair=True)
tracker.init(frame, intBB)
intBB1 = cv2.selectROI('frame', frame, fromCenter=False, showCrosshair=True)
tracker1.init(frame, intBB1)
elif key == ord('b'):
saveimg = True
elif key == 27:
cv2.destroyAllWindows()
break
# 保存多类别图片和xml
def saveMutilImg(frame, img, xyxy, obj_name, flag=False, mix=False):
global counter, saveimg
name = find_max_name(''.join(obj_name), mix)
H, W = frame.shape[0], frame.shape[-2]
if flag:
name += 1
print("Saving mixed_image:", ''.join(obj_name) + '_' + str(name), xyxy)
cv2.imwrite(path + 'mix_' + ''.join(obj_name) + '_' + str(name) + ".jpg", mix)
for rectangle in xyxy:
cv2.rectangle(mix, (rectangle[0], rectangle[1]), (rectangle[0], rectangle[3]), (0, 255, 0), 2)
cv2.imwrite(test_path + 'mix_' + ''.join(obj_name) + '_' + str(name) + ".jpg", mix)
create_tree('mix_' + ''.join(obj_name) + '_' + str(name) + '.jpg ', 'images', H, W)
create_object(annotation, mutils=xyxy, obj_name=obj_name)
cv2.waitKey(20)
tree = ET.ElementTree(annotation)
tree.write('.\Annotations\{}.xml'.format('mix_' + ''.join(obj_name) + '_' + str(name)))
return
name += 1
print("Saving mutil_image:", ''.join(obj_name) + '_' + str(name), xyxy)
cv2.imwrite(path + ''.join(obj_name) + '_' + str(name) + ".jpg", img)
cv2.imwrite(test_path + ''.join(obj_name) + '_' + str(name) + ".jpg", frame)
cv2.imshow('images', img)
create_tree(''.join(obj_name) + '_' + str(name) + '.jpg ', 'images', H, W)
create_object(annotation, mutils=xyxy, obj_name=obj_name)
cv2.waitKey(20)
tree = ET.ElementTree(annotation)
tree.write('.\Annotations\{}.xml'.format(''.join(obj_name) + '_' + str(name)))
# 多类别标注入口
def mutil_labels_video(source, mix=False, max_number=10):
saveimg = False
mix_img = False
track_flag_list = [None] * max_number
tracker_list = [None] * max_number
label_list = [''] * max_number
vs = cv2.VideoCapture(source)
while True:
frame = vs.read()
frame = frame[1]
frame = cv2.resize(frame, (640, 480))
frame = cv2.flip(frame, 3)
frame1 = frame.copy()
(H, W) = frame.shape[:2]
if frame is None:
break
xyxy = []
mix_xyxy = []
mix_frames = []
for index, track in enumerate(track_flag_list):
if track is not None:
(success, box) = tracker_list[index].update(frame)
# if success:
(x, y, w, h) = [int(v) for v in box]
xyxy.append((x, y, x + w, y + h))
if mix:
Scaling_probability = random.randint(args.Scaling_probability[0] * 10,
args.Scaling_probability[1] * 10) / 10
mix_frame = cv2.resize(frame1[y:y + h, x:x + w],
(int(w * Scaling_probability), int(h * Scaling_probability)))
mix_frames.append(mix_frame)
w_, h_ = int(w * Scaling_probability), int(h * Scaling_probability)
mix_xyxy.append((x, y, w_, h_))
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
if mix_frames:
mix_imgs = mix_roi_img(mix, img=mix_frames, mix_xyxy=mix_xyxy, mutil_mix=True)
if saveimg and mix:
saveMutilImg(frame, frame1, xyxy=xyxy, obj_name=label_list, flag=True, mix=mix_imgs)
if saveimg:
saveMutilImg(frame, frame1, xyxy=xyxy, obj_name=label_list)
cv2.imshow('frame', frame)
key = cv2.waitKey(20) & 0xFF
if key == ord('s'):
track_flag_list = [None] * max_number
tracker_list = [None] * max_number
label_list = [''] * max_number
try:
now_labels = int(input('请输入现在图片中要标注的类别数目(回车结束):'))
except:
print('请输入数字,如:2')
sys.exit()
for label in range(now_labels):
tracker_list[label] = OPENCV_OBJECT_TRACKERS[args.tracker]()
track_flag_list[label] = cv2.selectROI('frame', frame, fromCenter=False, showCrosshair=True)
label_list[label] = str(input('请输入目前这个框的物体类别(回车结束):'))
print('now class is:', label_list[label])
tracker_list[label].init(frame, track_flag_list[label])
elif key == ord('b'):
saveimg = True
elif key == 27:
cv2.destroyAllWindows()
vs.release()
break
if __name__ == '__main__':
"""
cv调包侠 Auto_maker使用教程
注意:为了更好的效果,您在开始使用后,先按下s键开始标注,按下b键开始保存,期间如果有不准确的地方,您有几个机会去调整boxes:
1 再按下s键,重新描框即可;
2 您可以通过test_img文件夹重新筛选删除图片。
"""
parser = argparse.ArgumentParser('Auto_maker')
parser.add_argument('-t', "--tracker", type=str, default='csrt', help='choose opencv tracker methods, 选择追踪方法')
parser.add_argument('-i', '--source_path', type=str, default='0',
help='0 or 1 is your capture, obbr use video.mp4 or use path_dir like: ./images/'
'0/1使用相机,图像文件夹路径和视频路径都可以')
parser.add_argument('--show', default=True, help='mix_up picture show, 展示')
parser.add_argument('--mix', type=str, default=False,
help='default:False is do not use mix_up method, and use ./mix_img to mix_up, '
'默认为False 则会不使用mix_up数据增强策略~使用:./mix_img或其他图像路径去mixup')
parser.add_argument('--Scaling_probability', default=[0.6, 1.4], action='store_true',
help='The probability of scaling your boxes,设置mix——up时的图像随机等比例缩放范围')
parser.add_argument('--multi_cls', default=True,
help='You can define how many trackers to start,设置为True则能够实时标注多目标')
"""
cv调包侠 更行 2020.12.27 超参数使用说明(必看)
如果您是使用单类别标注:请设置--multi_cls 的default 为False
开启multi_cls也可以单类别标注
"""
classes_list = ['UsingPhone', 'LikePhone'] # 类别名称 不建议使用"_"命名(如果选择多类别标注,可以不用写)
obj_name = classes_list[0] # 此次标注的类别名称(注意修改此处)
args = parser.parse_args()
counter, flag = 0, 0
path = "images/"
test_path = 'test_img/'
OPENCV_OBJECT_TRACKERS = { # 追踪方法 默认使用csrt
"csrt": cv2.TrackerCSRT_create,
"kcf": cv2.TrackerKCF_create,
"boosting": cv2.TrackerBoosting_create,
"mil": cv2.TrackerMIL_create,
"tld": cv2.TrackerTLD_create,
"medianflow": cv2.TrackerMedianFlow_create,
"mosse": cv2.TrackerMOSSE_create
}
if os.path.isdir(args.source_path): # 图片文件夹自动标注
run_on_images(args.source_path, mix=args.mix)
elif os.path.isfile(args.source_path) and not args.multi_cls: # 标注一个视频文件
run_on_video(args.source_path, mix=args.mix)
elif ('0' in args.source_path or '1' in args.source_path) and not args.multi_cls: # 实时标注(一个类别) (建议使用实际使用时的相机录制~)
run_on_video(int(args.source_path), mix=args.mix)
elif ('0' in args.source_path or '1' in args.source_path or os.path.isfile(
args.source_path)) and args.multi_cls: # 实时标注(多个类别)
if '0' in args.source_path or '1' in args.source_path:
mutil_labels_video(int(args.source_path), mix=args.mix)
elif os.path.isfile(args.source_path):
mutil_labels_video(args.source_path, mix=args.mix)