-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdeviceaccess.py
1484 lines (1219 loc) · 57 KB
/
deviceaccess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-FileCopyrightText: Deutsches Elektronen-Synchrotron DESY, MSK, ChimeraTK Project <[email protected]>
# SPDX-License-Identifier: LGPL-3.0-or-later
"""
This module offers the functionality of the DeviceAccess C++ library for python.
The ChimeraTK DeviceAccess library provides an abstract interface for register
based devices. Registers are identified by a name and usually accessed though
an accessor object. Since this library also allows access to other control
system applications, it can be understood as the client library of the
ChimeraTK framework.
More information on ChimeraTK can be found at the project's
`github.io <https://chimeratk.github.io/>`_.
"""
from __future__ import annotations
from typing import Sequence, Union
import _da_python_bindings as pb
import numpy as np
from _da_python_bindings import AccessMode, DataValidity, TransferElementID, VersionNumber, FundamentalType
import abc
import functools
#######################################################################################################################
def setDMapFilePath(dmapFilePath: str) -> None:
"""
Set the location of the dmap file.
The library will parse this dmap file for the device(alias) lookup.
Relative or absolute path of the dmap file (directory and file name).
Examples
--------
Setting the location of the dmap file
>>> import deviceaccess as da
>>> da.setDMapFilePath('deviceInformation/exampleCrate.dmap')
>>> dmap_path = da.getDMapFilePath()
>>> print(dmap_path)
deviceInformation/exampleCrate.dmap
"""
pb.setDmapFile(dmapFilePath)
#######################################################################################################################
def getDMapFilePath() -> str:
"""
Returns the dmap file name which the library currently uses for looking up device(alias) names.
"""
return pb.getDmapFile()
#######################################################################################################################
#######################################################################################################################
class GeneralRegisterAccessor(abc.ABC):
"""
This is a super class to avoid code duplication. It contains
methods that are common for the inheriting accessors.
.. note:: As all accessors inherit from numpy's ndarray, the
behaviour concerning slicing and mathematical operations
is simimlar. Result accessors share the attributes of the left
operand, hence they are shallow copies of it. This leads to
functionality that is not available in the C++ implementation.
Please refer to the examples below.
Examples
--------
Slicing and writing. Operations are shared with the original accessor.
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> originAcc = dev.getTwoDRegisterAccessor(np.int32, "BOARD/DMA")
>>> originAcc.set(7)
>>> originAcc.write() # all elements are now 7.
>>> print(originAcc)
[[7 7 7 7 7 7]
[7 7 7 7 7 7]
[7 7 7 7 7 7]
[7 7 7 7 7 7]]
>>> channels = originAcc.getNChannels()
>>> elementsPerChannel = originAcc.getNElementsPerChannel()
>>> print(channels, elementsPerChannel) # there are 4 channels, each with 6 elements
4 6
>>> slicedAcc = originAcc[:][1] # the second element of every channel
>>> slicedAcc.set(21) # set these to 21
>>> slicedAcc.write()
>>> print(originAcc) # originAcc is changed as well
[[ 7 7 7 7 7 7]
[21 21 21 21 21 21]
[ 7 7 7 7 7 7]
[ 7 7 7 7 7 7]]
Results from mathematical operations are shallow copies of the left operand.
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> oneAcc = dev.getScalarRegisterAccessor(np.uint32, "ADC/WORD_CLK_CNT")
>>> oneAcc.set(72)
>>> oneAcc.write() # oneAcc is now 72
>>> otherAcc = dev.getScalarRegisterAccessor(np.uint32, "ADC/WORD_CLK_CNT_1")
>>> otherAcc.set(47)
>>> otherAcc.write() # otherAcc is now 47.
>>> resultAcc = oneAcc + otherAcc # resultAcc's numpy buffer is now 119
>>> print(resultAcc)
[119]
>>> resultAcc.write() # write() will also write into the register of oneAcc
>>> oneAcc.read()
>>> print(oneAcc)
[119]
>>> otherAcc.read() # the buffer's and registers of the right operand are not touched
>>> print(otherAcc)
[47]
>>> resultAcc.getName() # the resultAcc is a shallow copy of the left operand
'/ADC/WORD_CLK_CNT'
"""
def read(self) -> None:
"""
Read the data from the device.
If :py:obj:`AccessMode.wait_for_new_data` was set, this function
will block until new data has arrived. Otherwise, it still might block
for a short time until the data transfer is complete.
Examples
--------
Reading from a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.read()
>>> acc
ScalarRegisterAccessor([99], dtype=int32)
"""
raise Exception('Not implemented in base class')
def readLatest(self) -> bool:
"""
Read the latest value, discarding any other update since the last read if present.
Otherwise, this function is identical to :py:func:`readNonBlocking`,
i.e. it will never wait for new values, and it will return
whether a new value was available if
:py:obj:`AccessMode.wait_for_new_data` is set.
"""
raise Exception('Not implemented in base class')
def readNonBlocking(self) -> bool:
"""
Read the next value, if available in the input buffer.
If :py:obj:`AccessMode.wait_for_new_data` was set, this function returns
immediately and the return value indicated if a new value was
available (`True`) or not (`False`).
If :py:obj:`AccessMode.wait_for_new_data` was not set, this function is
identical to :py:meth:`.read` , which will still return quickly. Depending on
the actual transfer implementation, the backend might need to
transfer data to obtain the current value before returning. Also
this function is not guaranteed to be lock free. The return value
will be always true in this mode.
"""
raise Exception('Not implemented in base class')
def write(self) -> bool:
"""
Write the data to device.
The return value is true, old data was lost on the write transfer
(e.g. due to an buffer overflow). In case of an unbuffered write
transfer, the return value will always be false.
Examples
--------
Writing to a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> reference = [199]
>>> acc.set(reference)
>>> acc.write()
ScalarRegisterAccessor([199], dtype=int32)
"""
raise Exception('Not implemented in base class')
def writeDestructively(self) -> bool:
"""
Just like :py:meth:`.write`, but allows the implementation
to destroy the content of the user buffer in the process.
The application must expect the user buffer of the
TransferElement to contain undefined data after calling this function.
"""
raise Exception('Not implemented in base class')
def getName(self) -> str:
"""
Returns the name that identifies the process variable.
Examples
--------
Getting the name of a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.getName()
'/ADC/WORD_CLK_CNT_1'
"""
return self._accessor.getName()
def getUnit(self) -> str:
"""
Returns the engineering unit.
If none was specified, it will default to "n./a."
Examples
--------
Getting the engineering unit of a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.getUnit()
'n./a.'
"""
return self._accessor.getUnit()
def getValueType(self) -> UserType:
"""
Returns the type for the userType of this transfer element, that
was given at the initialization of the accessor.
Examples
--------
Getting the userType of a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.getValueType()
numpy.int32
"""
return self.userType
def getDescription(self) -> str:
"""
Returns the description of this variable/register, if there is any.
Examples
--------
Getting the description of a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.getDescription()
''
"""
return self._accessor.getDescription()
def getAccessModeFlags(self) -> Sequence[AccessMode]:
"""
Returns the access modes flags, that
were given at the initialization of the accessor.
Examples
--------
Getting the access modes flags of a OneDRegisterAccessor with the wait_for_new_data flag:
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getOneDRegisterAccessor(
np.int32, "MODULE1/TEST_AREA_PUSH", 0, 0, [da.AccessMode.wait_for_new_data])
>>> acc.getAccessModeFlags()
[da.AccessMode.wait_for_new_data]
"""
accessModeFlagStrings = self._accessor.getAccessModeFlagsString()
flags = []
for flag in accessModeFlagStrings.split(","):
if flag == 'wait_for_new_data':
flags.append(AccessMode.wait_for_new_data)
if flag == 'raw':
flags.append(AccessMode.raw)
return flags
def getVersionNumber(self) -> VersionNumber:
"""
Returns the version number that is associated with the last transfer
(i.e. last read or write). See :py:class:`VersionNumber` for details.
Examples
--------
Getting the version number of a OneDRegisterAccessor:
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getOneDRegisterAccessor(
np.int32, "MODULE1/TEST_AREA_PUSH", 0, 0, [da.AccessMode.wait_for_new_data])
>>> acc.getVersionNumber()
<_da_python_bindings.VersionNumber at 0x7f52b5f8a740>
"""
return self._accessor.getVersionNumber()
def isReadOnly(self) -> bool:
"""
Check if transfer element is read only, i.e.
it is readable but not writeable.
Examples
--------
Getting the readOnly status of a OneDRegisterAccessor:
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getOneDRegisterAccessor(
np.int32, "MODULE1/TEST_AREA_PUSH", 0, 0, [da.AccessMode.wait_for_new_data])
>>> acc.isReadOnly()
True
"""
return self._accessor.isReadOnly()
def isReadable(self) -> bool:
"""
Check if transfer element is readable.
It throws an exception if you try to read and :py:meth:`isReadable` is not True.
Examples
--------
Getting the readable status of a OneDRegisterAccessor:
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getOneDRegisterAccessor(
np.int32, "MODULE1/TEST_AREA_PUSH", 0, 0, [da.AccessMode.wait_for_new_data])
>>> acc.isReadable()
True
"""
return self._accessor.isReadable()
def isWriteable(self) -> bool:
"""
Check if transfer element is writeable.
It throws an exception if you try to write and :py:meth:`isWriteable` is not True.
Examples
--------
Getting the writeable status of a OneDRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getOneDRegisterAccessor(
np.int32, "MODULE1/TEST_AREA_PUSH", 0, 0, [da.AccessMode.wait_for_new_data])
>>> acc.isReadable()
False
"""
return self._accessor.isWriteable()
def isInitialised(self) -> bool:
"""
Return if the accessor is properly initialized.
It is initialized if it was constructed passing the
pointer to an implementation, it is not
initialized if it was constructed only using the placeholder
constructor without arguments. Which should currently not happen,
as the registerPath is a required argument for this module, but might
be true for other implementations.
Examples
--------
Getting the initialized status of a OneDRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getOneDRegisterAccessor(
np.int32, "MODULE1/TEST_AREA_PUSH", 0, 0, [da.AccessMode.wait_for_new_data])
>>> acc.isInitialised()
True
"""
return self._accessor.isInitialised()
def setDataValidity(self, valid=DataValidity.ok) -> None:
"""
Associate a persistent data storage object to be updated
on each write operation of this ProcessArray.
If no persistent data storage as associated previously, the
value from the persistent storage is read and send to the receiver.
.. note:: A call to this function will be ignored, if the
TransferElement does not support persistent data storage
(e.g. read-only variables or device registers)
Parameters
----------
valid: DataValidity
DataValidity.ok or DataValidity.faulty
"""
self._accessor.setDataValidity(valid)
def dataValidity(self) -> DataValidity:
"""
Return current validity of the data.
Will always return :py:obj:`DataValidity.ok` if the backend does not support it
"""
return self._accessor.dataValidity()
def getId(self) -> TransferElementID:
"""
Obtain unique ID for the actual implementation of this TransferElement.
This means that e.g. two instances of ScalarRegisterAccessor
created by the same call to :py:meth:`Device.getScalarRegisterAccessor`
will have the same ID, while two instances obtained by to
difference calls to :py:meth:`Device.getScalarRegisterAccessor`
will have a different ID even when accessing the very same register.
Examples
--------
Getting the name of a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.getId()
<_da_python_bindings.TransferElementID at 0x7f5298a8f400>
"""
return self._accessor.getId()
def interrupt(self) -> None:
"""
Place a thread interrupted exception on the read queue of this accessor,
so the thread currently waiting in a blocking read() will terminate. May
only be called for accessors with AccessMode.wait_for_new_data.
"""
self._accessor.interrupt()
#######################################################################################################################
#######################################################################################################################
class NumpyGeneralRegisterAccessor(GeneralRegisterAccessor):
def __init__(self, channels, elementsPerChannel, userType, accessor,
accessModeFlags: Sequence[AccessMode] = None) -> None:
dtype = userType
if dtype == str:
dtype = 'U1'
if channels is None:
self.__array = np.zeros(shape=(elementsPerChannel), dtype=dtype)
else:
self.__array = np.zeros(shape=(channels, elementsPerChannel), dtype=dtype)
self._accessor = accessor
self.userType = userType
self._AccessModeFlags = accessModeFlags
def get(self) -> np.ndarray:
return self.__array
def set(self, value) -> None:
"""
Set the user buffer to the given value.
The value shape has to match the accessor, any mismatch will throw an exception.
Different types will be converted to the userType of the accessor.
Parameters
----------
value : numpy.array or compatible type
The new content of the user buffer.
Examples
--------
Setting a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.read()
ScalarRegisterAccessor([74678], dtype=int32)
>>> acc.set([-23])
>>> acc.write()
ScalarRegisterAccessor([-23], dtype=int32)
Setting a OneDRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getOneDRegisterAccessor(np.int32, "BOARD/WORD_CLK_MUX")
>>> acc.read()
OneDRegisterAccessor([342011132 958674678 342011132 958674678], dtype=int32)
>>> acc.set([1, 9, 42, -23])
>>> acc.write()
OneDRegisterAccessor([ 1, 9, 42, -23], dtype=int32)
Setting a TwoDRegisterAccessor
>>> import deviceaccess as da
>>> dda.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getTwoDRegisterAccessor(np.int32, "BOARD/DMA")
>>> acc.read()
TwoDRegisterAccessor([[ 0 4 16 36 64 100]
[ 0 0 0 0 0 0]
[ 1 9 25 49 81 121]
[ 0 0 0 0 0 0]], dtype=int32)
>>> channels = acc.getNChannels()
>>> elementsPerChannel = acc.getNElementsPerChannel()
>>> reference = [
>>> [i*j+i+j+12 for j in range(elementsPerChannel)] for i in range(channels)]
>>> acc.set(reference)
>>> acc.write()
TwoDRegisterAccessor([[12, 13, 14, 15, 16, 17],
[13, 15, 17, 19, 21, 23],
[14, 17, 20, 23, 26, 29],
[15, 19, 23, 27, 31, 35]], dtype=int32)
"""
# TODO: maybe we should store scalars as such?
if self.__array.dtype.kind != 'U':
if not np.isscalar(value):
newarray = np.asarray(value, dtype=self.__array.dtype)
else:
newarray = np.asarray([value], dtype=self.__array.dtype)
else:
if not np.isscalar(value):
newarray = np.asarray(value)
else:
newarray = np.asarray([value])
if self.__array.shape != newarray.shape:
raise ValueError('The shape of the provided value is incompatible with this accessor.')
self.__array = newarray
# pass through all (non-operator) functions to the np array (unless defined here)
def __getattr__(self, name):
return self.__array.__getattribute__(name)
# comparison operators
def __lt__(self, other) -> bool:
return self.__array < other
def __le__(self, other) -> bool:
return self.__array <= other
def __gt__(self, other) -> bool:
return self.__array > other
def __ge__(self, other) -> bool:
return self.__array >= other
def __eq__(self, other) -> bool:
return self.__array == other
def __ne__(self, other) -> bool:
return self.__array != other
# conversion operators
def __str__(self) -> str:
return str(self.__array)
def __bool__(self) -> bool:
return bool(self.__array)
# subscript operator as getter
def __getitem__(self, key) -> UserType:
return self.__array[key]
# subscript operator as setter
def __setitem__(self, key, newvalue) -> None:
self.__array[key] = newvalue
# binary operators
def __add__(self, other) -> np.ndarray:
return self.__array.__add__(other)
def __sub__(self, other) -> np.ndarray:
return self.__array.__sub__(other)
def __mul__(self, other) -> np.ndarray:
return self.__array.__mul__(other)
def __truediv__(self, other) -> np.ndarray:
return self.__array.__truediv__(other)
def __floordiv__(self, other) -> np.ndarray:
return self.__array.__floordiv__(other)
def __mod__(self, other) -> np.ndarray:
return self.__array.__mod__(other)
def __pow__(self, other) -> np.ndarray:
return self.__array.__pow__(other)
def __rshift__(self, other) -> np.ndarray:
return self.__array.__rshift__(other)
def ___lshift___mul__(self, other) -> np.ndarray:
return self.__array.__lshift__(other)
def __and__(self, other) -> np.ndarray:
return self.__array.__and__(other)
def __or__(self, other) -> np.ndarray:
return self.__array.__or__(other)
def __xor__(self, other) -> np.ndarray:
return self.__array.__xor__(other)
# assignment operators
def __isub__(self, other) -> RegisterAccessor:
self.__array.__isub__(other)
return self
def __iadd__(self, other) -> RegisterAccessor:
self.__array.__iadd__(other)
return self
def __imul__(self, other) -> RegisterAccessor:
self.__array.__imul__(other)
return self
def __idiv__(self, other) -> RegisterAccessor:
self.__array.__idiv__(other)
return self
def __ifloordiv__(self, other) -> RegisterAccessor:
self.__array.__ifloordiv__(other)
return self
def __imod__(self, other) -> RegisterAccessor:
self.__array.__imod__(other)
return self
def __ipow__(self, other) -> RegisterAccessor:
self.__array.__ipow__(other)
return self
def __irshift__(self, other) -> RegisterAccessor:
self.__array.__irshift__(other)
return self
def __ilshift__(self, other) -> RegisterAccessor:
self.__array.__ilshift__(other)
return self
def __iand__(self, other) -> RegisterAccessor:
self.__array.__iand__(other)
return self
def __ior__(self, other) -> RegisterAccessor:
self.__array.__ior__(other)
return self
def __ixor__(self, other) -> RegisterAccessor:
self.__array.__ixor__(other)
return self
# unary operators
def __neg__(self) -> np.ndarray:
return self.__array.__neg__()
def __pos__(self) -> np.ndarray:
return self.__array.__pos__()
def __invert__(self) -> np.ndarray:
return self.__array.__invert__()
# accessor functions
def read(self) -> None:
self.__array = self._accessor.read(self.__array)
def readNonBlocking(self) -> None:
(status, self.__array) = self._accessor.readNonBlocking(self.__array)
return status
def readLatest(self) -> None:
(status, self.__array) = self._accessor.readLatest(self.__array)
return status
def write(self) -> None:
return self._accessor.write(self.__array)
def writeDestructively(self) -> None:
return self._accessor.writeDestructively(self.__array)
def getAsCooked(self, userType, channel: int, element: int):
userTypeFunctionExtension = Device._userTypeExtensions.get(userType, None)
if not userTypeFunctionExtension:
raise SyntaxError("userType not supported" + str(Device._userTypeExtensions))
getAsCooked = getattr(self._accessor, "getAsCooked_" + userTypeFunctionExtension)
return getAsCooked(self.__array, channel, element)
def setAsCooked(self, channel: int, element: int, value):
self.__array = self._accessor.setAsCooked(self.__array, channel, element, value)
# transfer doc strings from base class for accessor functions
read.__doc__ = GeneralRegisterAccessor.read.__doc__
readNonBlocking.__doc__ = GeneralRegisterAccessor.readNonBlocking.__doc__
readLatest.__doc__ = GeneralRegisterAccessor.readLatest.__doc__
write.__doc__ = GeneralRegisterAccessor.write.__doc__
writeDestructively.__doc__ = GeneralRegisterAccessor.writeDestructively.__doc__
#######################################################################################################################
#######################################################################################################################
class TwoDRegisterAccessor(NumpyGeneralRegisterAccessor):
"""
Accessor class to read and write registers transparently by using the accessor object
like a 2D array of the type UserType.
Conversion to and from the UserType will be handled by a data
converter matching the register description in the map (if applicable).
.. note:: As all accessors inherit from :py:obj:`GeneralRegisterAccessor`,
please refer to the respective examples for the behaviour of
mathematical operations and slicing with accessors.
.. note:: Transfers between the device and the internal buffer need
to be triggered using the read() and write() functions before reading
from resp. after writing to the buffer using the operators.
"""
def __init__(self, userType, accessor, accessModeFlags: Sequence[AccessMode] = None) -> None:
channels = accessor.getNChannels()
elementsPerChannel = accessor.getNElementsPerChannel()
super().__init__(channels, elementsPerChannel, userType, accessor, accessModeFlags)
def getNChannels(self) -> int:
"""
Return number of channels.
"""
return self._accessor.getNChannels()
def getNElementsPerChannel(self) -> int:
"""
Return number of elements/samples per channel.
"""
return self._accessor.getNElementsPerChannel()
#######################################################################################################################
#######################################################################################################################
class OneDRegisterAccessor(NumpyGeneralRegisterAccessor):
"""
Accessor class to read and write registers transparently by using the accessor object
like a vector of the type UserType.
Conversion to and from the UserType will be handled by a data
converter matching the register description in the map (if applicable).
.. note:: As all accessors inherit from :py:obj:`GeneralRegisterAccessor`,
please refer to the respective examples for the behaviour of
mathematical operations and slicing with accessors.
.. note:: Transfers between the device and the internal buffer need
to be triggered using the read() and write() functions before reading
from resp. after writing to the buffer using the operators.
"""
def __init__(self, userType, accessor, accessModeFlags: Sequence[AccessMode]) -> None:
elements = accessor.getNElements()
super().__init__(None, elements, userType, accessor, accessModeFlags)
def getNElements(self) -> int:
"""
Return number of elements/samples in the register.
"""
return self._accessor.getNElements()
#######################################################################################################################
#######################################################################################################################
class ScalarRegisterAccessor(NumpyGeneralRegisterAccessor):
"""
Accessor class to read and write scalar registers transparently by using the accessor object
like a vector of the type UserType.
Conversion to and from the UserType will be handled by a data
converter matching the register description in the map (if applicable).
.. note:: As all accessors inherit from :py:obj:`GeneralRegisterAccessor`,
please refer to the respective examples for the behaviour of
mathematical operations and slicing with accessors.
.. note:: Transfers between the device and the internal buffer need
to be triggered using the read() and write() functions before reading
from resp. after writing to the buffer using the operators.
"""
def __init__(self, userType, accessor, accessModeFlags: Sequence[AccessMode] = None) -> None:
super().__init__(None, 1, userType, accessor, accessModeFlags)
def readAndGet(self) -> np.number:
"""
Convenience function to read and return a value of UserType.
Examples
--------
Reading and Getting from a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> dev.write("ADC/WORD_CLK_CNT_1", 37)
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.readAndGet()
37
"""
return self._accessor.readAndGet()
def setAndWrite(self, newValue: np.number, versionNumber: VersionNumber = None) -> None:
"""
Convenience function to set and write new value.
Parameters
----------
newValue : numpy.number and compatible types
The content that should be written to the register.
versionNumber: VersionNumber, optional
The versionNumber that should be used for the write action.
Examples
--------
Reading and Getting from a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.setAndWrite(38)
>>> acc.readAndGet()
38
"""
if versionNumber is None:
versionNumber = VersionNumber()
self._accessor.setAndWrite(newValue, versionNumber)
def writeIfDifferent(self, newValue: np.number, versionNumber: VersionNumber = None,
validity: DataValidity = DataValidity.ok) -> None:
"""
Convenience function to set and write new value if it differes from the current value.
The given version number is only used in case the value differs.
Parameters
----------
newValue : numpy.number and compatible types
The contentthat should be written to the register.
versionmNumber: VersionNumber, optional
The versionNumber that should be used for the write action.
Examples
--------
Reading and Getting from a ScalarRegisterAccessor
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
>>> dev = da.Device("CARD_WITH_MODULES")
>>> dev.open()
>>> acc = dev.getScalarRegisterAccessor(np.int32, "ADC/WORD_CLK_CNT_1")
>>> acc.setAndWrite(38)
>>> acc.writeIfDifferent(38) # will not write
"""
if versionNumber is None:
versionNumber = VersionNumber.getNullVersion()
self._accessor.writeIfDifferent(newValue, versionNumber, validity)
#######################################################################################################################
#######################################################################################################################
class VoidRegisterAccessor(GeneralRegisterAccessor, np.ndarray):
"""
Accessor class to read and write void registers transparently by using the accessor object..
.. note:: Transfers between the device and the internal buffer need
to be triggered using the read() and write() functions before reading
from resp. after writing to the buffer using the operators.
"""
def __new__(cls, accessor, accessModeFlags: Sequence[AccessMode] = None) -> None:
obj = np.asarray(
np.zeros(shape=(1, 1), dtype=np.void)).view(cls)
obj = obj.ravel()
obj._accessor = accessor
obj._AccessModeFlags = accessModeFlags
return obj
def __array_finalize__(self, obj) -> None:
if obj is None:
return
self._accessor = getattr(obj, '_accessor', None)
self._AccessModeFlags = getattr(obj, '_AccessModeFlags', None)
def read(self) -> None:
self._accessor.read()
def readLatest(self) -> bool:
return self._accessor.readLatest()
def readNonBlocking(self) -> bool:
return self._accessor.readNonBlocking()
def write(self) -> bool:
return self._accessor.write()
def writeDestructively(self) -> bool:
return self._accessor.writeDestructively()
#######################################################################################################################
#######################################################################################################################
class Device:
""" Construct Device from user provided device information
This constructor is used to open a device listed in the dmap file.
Parameters
----------
aliasName : str
The device alias/name in the dmap file for the hardware
Examples
--------
Creating a device using a dmap file:
>>> import deviceaccess as da
>>> da.setDMapFilePath("deviceInformation/exampleCrate.dmap")
# CARD_WITH_MODULES is an alias in the dmap file above
>>> dev = da.Device("CARD_WITH_MODULES")
Supports also with-statements:
>>> with da.Device('CARD_WITH_MODULES') as dev:
>>> reg_value = dev.read('/PATH/TO/REGISTER')
"""
# dict to get the corresponding function for each datatype
_userTypeExtensions = {
np.int8: "int8",
np.uint8: "uint8",
np.int16: "int16",
np.uint16: "uint16",
np.int32: "int32",
np.uint32: "uint32",
np.int64: "int64",
np.uint64: "uint64",
np.single: "float",
np.float32: "float",
np.double: "double",
np.float64: "double",
np.bool_: "boolean",
bool: "boolean",
str: "string",
}