-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnetext.py
executable file
·463 lines (395 loc) · 12.8 KB
/
netext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
"""Extra functions and other extensions for pynet datastructures
"""
import pynet,os,netio
import random
import heapq
import string
import percolator
import transforms
import shutil
import copy
import numpy
class Net_edges:
def __init__(self,net):
self.net=net
def __iter__(self):
if self.net.isSymmetric():
for node1Index in self.net:
node1=self.net[node1Index]
for node2Index in node1:
if node1Index.__hash__()<node2Index.__hash__():
yield [node1Index,node2Index,self.net[node1Index,node2Index]]
else:
for node1Index in self.net:
node1=self.net[node1Index]
for node2Index in node1.iterOut():
yield [node1Index,node2Index,self.net[node1Index,node2Index]]
def __len__(self):
lenght=0
if self.net.isSymmetric():
for nodeIndex in self.net:
lenght+=self.net[nodeIndex].deg()
return lenght/2
else:
for nodeIndex in self.net:
lenght+=self.net[nodeIndex].outDeg()
return lenght
def __str__(self):
return str(list(self))
pynet.VirtualNet.edges=property(Net_edges)
class Net_weights:
def __init__(self,net):
self.net=net
def __iter__(self):
for edge in self.net.edges:
yield edge[2]
def __len__(self):
return len(self.net.edges)
def __str__(self):
return reduce(lambda x,y: str(x)+" "+str(y),self)
pynet.VirtualNet.weights=property(Net_weights)
class Node_weights:
def __init__(self,node):
self.node=node
def __iter__(self):
if self.node.net.isSymmetric():
for index in self.node:
yield self.node.net[self.node.name,index]
else:
for index in self.node:
yield self.node.net[self.node.name,index]+self.node.net[index,self.node.name]
def __len__(self):
return self.node.deg()
def __str__(self):
rs=""
for edge in self:
rs+=str(edge)+" "
return rs
pynet.Node.weights=property(Node_weights)
class Node_inWeights:
def __init__(self,node):
self.node=node
def __iter__(self):
for otherNodeName in self.node.iterIn():
yield self.node.net[otherNodeName,self.node.name]
def __len__(self):
return self.node.inDeg()
def __str__(self):
return " ".join(self)
pynet.Node.inWeights=property(Node_inWeights)
class Node_outWeights:
def __init__(self,node):
self.node=node
def __iter__(self):
for otherNodeName in self.node.iterOut():
yield self.node.net[self.node.name,otherNodeName]
def __len__(self):
return self.node.outDeg()
def __str__(self):
return " ".join(self)
pynet.Node.outWeights=property(Node_outWeights)
def getInStrength(node):
return sum(node.inWeights)
pynet.Node.inStrength=property(getInStrength)
def getOutStrength(node):
return sum(node.outWeights)
pynet.Node.outStrength=property(getOutStrength)
def getStrength(node):
return sum(node.weights)
pynet.Node.strength=getStrength
def strengths(net,nodes=None):
strengths={}
if nodes==None:
nodes=net
for node in nodes:
strengths[node]=net[node].strength()
return strengths
def Net_add(self,net):
for node in net:
for neigh in net[node]:
self[node,neigh]=net[node,neigh]
pynet.VirtualNet.add=Net_add
class NodeProperties(dict):
def __init__(self):
super(dict,self)
self.__dict__={}
def addProperty(self,propertyName):
if not hasattr(self,propertyName):
newValue={}
self[propertyName]=newValue
self.__setattr__(propertyName,newValue)
def addNodeProperty(net,propertyName):
if not hasattr(net,"nodeProperty"):
net.nodeProperty=NodeProperties()
net.nodeProperty.addProperty(propertyName)
#if not hasattr(net.nodeProperty,propertyName):
# newValue={}
# #net.nodeProperty.__setattr__(propertyName,newValue)
# net.nodeProperty[propertyName]=newValue
def copyNodeProperties(fromNet,toNet):
if hasattr(fromNet,"nodeProperty"):
for p in fromNet.nodeProperty:
addNodeProperty(toNet,p)
for node in toNet:
value=fromNet.nodeProperty[p][node]
toNet.nodeProperty[p][node]=value
def getSubnet(net,nodes):
""" See transforms.getSubnet
"""
return transforms.getSubnet(net,nodes)
def getNumericProperties(net):
""" Returns a list of all node properties
whose values are numeric (int or float)"""
propertylist=list(net.nodeProperty)
numericproperties=[]
for prop in propertylist:
numericproperty=True
for node in net:
if not(isinstance(net.nodeProperty[prop][node],int) or (isinstance(net.nodeProperty[prop][node],float))):
numericproperty=False
if numericproperty==True:
numericproperties.append(prop)
return numericproperties
def getPropertyTypes(net):
"""Returns a dictionary where keys are nodeProperties
and values indicate their type ('int','float','number','string','string/color','mixed')
"""
import visuals
propertylist=list(net.nodeProperty)
propertydict={}
for prop in propertylist:
intprop=True
floatprop=True
numprop=True
strprop=True
for node in net:
if not(isinstance(net.nodeProperty[prop][node],int)):
intprop=False
if not(isinstance(net.nodeProperty[prop][node],float)):
floatprop=False
if not(isinstance(net.nodeProperty[prop][node],float)) and not(isinstance(net.nodeProperty[prop][node],int)):
numprop=False
if not(isinstance(net.nodeProperty[prop][node],str)):
strprop=False
if intprop==True:
propertydict[prop]='int'
elif floatprop==True:
propertydict[prop]='float'
elif numprop==True:
propertydict[prop]='number'
elif strprop==True:
if visuals.isListOfColors(set(net.nodeProperty[prop].values())):
propertydict[prop]='string/color'
else:
propertydict[prop]='string'
else:
propertydict[prop]='mixed'
return propertydict
class Enumerator:
"""
Finds enumeration for hashable items. For new items a new number is
made up and if the item already has a number it is returned instead
of a new one.
>>> e=Enumerator()
>>> e['foo']
0
>>> e['bar']
1
>>> e['foo']
0
>>> list(e)
['foo', 'bar']
"""
def __init__(self):
self.number={}
self.item=[]
def _addItem(self,item):
newNumber=len(self.number)
self.number[item]=newNumber
self.item.append(item)
return newNumber
def __getitem__(self,item):
try:
return self.number[item]
except KeyError:
return self._addItem(item)
def getReverse(self,number):
return self.item[number]
def __iter__(self):
return self.number.__iter__()
def __len__(self):
return len(self.number)
def deg(net):
degrees={}
for node in net:
degrees[node]=net[node].deg()
return degrees
def fullNet(nodes,weight=1):
net=pynet.SymmNet()
for node1 in nodes:
for node2 in nodes:
net[node1,node2]=weight
return net
#def collapseBiNet(net,nodes):
# newNet=pynet.SymmNet()
# for node in nodes:
# newNet.add(fullNet(list(net[node])))
def collapseBiNet(net,nodesToRemove):
return transforms.collapseBipartiteNet(net,nodesToRemove)
# newNet=pynet.SymmNet()
# for node in nodesToRemove:
# degree=float(net[node].deg())
# for node1 in net[node]:
# for node2 in net[node]:
# if node1.__hash__()>node2.__hash__():
# newNet[node1,node2]=newNet[node1,node2]+1.0/degree
# return newNet
def getMeanDistance(theSet,distanceFunction):
l=list(theSet)
n=0
s=0.0
for i in l:
for j in l:
if i.__hash__()>j.__hash__():
s+=distanceFunction(i,j)
n+=1
return s/float(n)
def getPathLengths(net,start,undirected=True):
'''Dijkstra's algorithm for shortest paths
Returns all possible path from the starting Node
Parameters :
net : Network
start : Starting Node
undirected : bool
If True, network in undirected else directed
'''
if undirected:
# The implementation for undirected networks.
# Assumes the network is unweighted
edge=set([start])
interior=set()
pathlengths={}
i=0
while len(edge)>0:
i+=1
interior=edge.union(interior)
newEdge=set()
for node in edge:
for neighbor in net[node]:
if neighbor not in interior:
newEdge.add(neighbor)
pathlengths[neighbor]=i
edge=newEdge
return pathlengths
else :
# The implementation for directed networks.
# Assumes the network in unweighted
edge=set([start])
interior=set()
pathlengths={}
i=0
while len(edge)>0:
i+=1
interior=edge.union(interior)
newEdge=set()
for node in edge:
for neighbor in net[node].iterOut():
if neighbor not in interior:
newEdge.add(neighbor)
pathlengths[neighbor]=i
edge=newEdge
return pathlengths
def getMeanPathLength(net,maxSamples=1000):
"""
Returns the mean path length of a network. If maxSample is not negative
only at maxSample number of nodes is used as a starting point for finding
paths instead of exhaustively going through all the paths.
"""
#First check if we can use the c++-implementation
#if net.__class__ == pynet.LCELibSparseSymmNet:
# return pynet._cnet.meanPathLength(net._net,maxSamples)
#else:
#
##this cannot be done as the no unweighted pathlengths implemented in c++
nodes=list(net)
if len(net)>maxSamples and maxSamples>0:
random.shuffle(nodes)
nodes=nodes[:maxSamples]
m=0
for node in nodes:
m+=numpy.mean(getPathLengths(net,node).values())
return float(m)/float(len(nodes))
def getPathLengthDistribution(net,maxSamples=1000):
"""
Returns the shortest unweighted path length distribution of a network. If maxSample is not negative
only at maxSample number of nodes is used as a starting point for finding
paths instead of exhaustively going through all the paths.
"""
nodes=list(net)
if len(net)>maxSamples and maxSamples>0:
random.shuffle(nodes)
nodes=nodes[:maxSamples]
m=0
distanceDist={}
for node in nodes:
distances=getPathLengths(net,node).values()
m+=len(distances)
for distance in distances:
distanceDist[distance]=distanceDist.get(distance,0)+1
#Normalize the distribution
for distance in distanceDist:
distanceDist[distance]=distanceDist[distance]/float(m)
return distanceDist
def getBetweennessCentrality(net,edgeBC=False):
"""
Returns a map from each node to its unweighted betweenness centrality.
Note: this function needs some more testing.
"""
#Implementation of the algorithm found in this paper:
#www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
cb={}
for node in net:
cb[node]=0
if edgeBC:
bcNet=pynet.SymmNet()
for node in net:
st=[]
p={}
sigma={}
d={}
delta={}
for t in net:
p[t]=[]
sigma[t]=0
d[t]=-1
delta[t]=0
sigma[node]=1
d[node]=0
q=[node]
while len(q)>0:
v=q.pop(0)
st.append(v)
for w in net[v]:
if d[w]<0:
q.append(w)
d[w]=d[v]+1
if d[w]==d[v]+1:
sigma[w]+=sigma[v]
p[w].append(v)
while len(st)>0:
w=st.pop()
for v in p[w]:
partialDelta=float(sigma[v])/float(sigma[w])*(1+delta[w])
delta[v]+=partialDelta
if edgeBC:
bcNet[v,w]=bcNet[v,w]+partialDelta
if w!=node:
cb[w]+=delta[w]
for node in cb:
cb[node]=cb[node]/2.0
if edgeBC:
for e in bcNet.edges:
bcNet[e[0],e[1]]=e[2]/2.0
return cb,bcNet
else:
return cb