Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ROMS-WW3 error: Inlet_test/WW3 test case #330

Open
huyquangtranaus opened this issue Nov 2, 2024 · 3 comments
Open

ROMS-WW3 error: Inlet_test/WW3 test case #330

huyquangtranaus opened this issue Nov 2, 2024 · 3 comments

Comments

@huyquangtranaus
Copy link

huyquangtranaus commented Nov 2, 2024

Hi John,

I am trying to run a coupled ROMS-WW3 test case in https://github.com/DOI-USGS/COAWST/tree/main/Projects/Inlet_test/WW3 directory using COAWST 3.8 and got an error message below.

Do you have any idea what could go wrong? Thank you.

  Type 6 : Partitioned wave field data
-----------------------------------------
From : 2000/01/01 00:00:00 UTC
To : 2000/01/01 12:00:00 UTC
Interval : 01:00:00

        output dates out of run dates : Restart files second request deactivated
   Wave model ...

malloc(): invalid size (unsorted)

Program received signal SIGABRT: Process abort signal.

Backtrace for this error:
#0 0x15146163e6ef in ???
#1 0x15146168b94c in ???
#2 0x15146163e645 in ???
#3 0x1514616287f2 in ???
#4 0x15146162912f in ???
#5 0x1514616959f6 in ???
#6 0x1514616987db in ???
#7 0x151461699808 in ???
#8 0x8547b7 in __w3initmd_MOD_w3mpio
at /data/gpfs/projects/modelling/COAWST_38/WW3/model/src/w3initmd.F90:5750
#9 0x85e995 in _w3initmd_MOD_w3init
at /data/gpfs/projects/modelling/COAWST_38/WW3/model/src/w3initmd.F90:1518
#10 0x7d708e in ww3_init

at /data/gpfs/projects/modelling/COAWST_38/WW3/model/src/ww3_shel.F90:1944
#11 0x407463 in ???
#12 0x406420 in ???
#13 0x15146162958f in ???
#14 0x15146162963f in ???
#15 0x406474 in ???
#16 0xffffffffffffffff in ???
srun: error: HPC-bm177: task 1: Aborted (core dumped)
slurmstepd: error: mpi/pmix_v4: _errhandler: HPC-bm177 [0]: pmixp_client_v2.c:211: Error handler invoked: status = -61, source = [slurm.pmix.1000316.0:1]
slurmstepd: error: *** STEP 1000316.0 ON HPC-bm177 CANCELLED AT 202

4-11-02T16:04:48 ***
srun: Job step aborted: Waiting up to 122 seconds for job step to finish.
srun: error: HPC-bm177: task 0: Killed

error.out.txt

@jcwarner-usgs
Copy link
Collaborator

something to do with
! 2.c Data server mode
what does your ww3_shel.inp look like
$ IOSTYP = 0 : No data server processes, direct access output from
$ each process (requires true parallel file system).
$ 1 : No data server process. All output for each type
$ performed by process that performs computations too.
$ 2 : Last process is reserved for all output, and does no
$ computing.
$ 3 : Multiple dedicated output processes.
$
1

@huyquangtranaus
Copy link
Author

Here is my wwm_shel.inp
$ -------------------------------------------------------------------- $
$ WAVEWATCH III shell input file $
$ -------------------------------------------------------------------- $
$ Define input to be used with F/T/C flag for use or nor or coupling and
$ T/F flag for definition as a homogeneous field.
$
$ Include ice and mud parameters only if IC1/2/3/4 used :
F F Ice parameter 1
F F Ice parameter 2
F F Ice parameter 3
F F Ice parameter 4
F F Ice parameter 5
F F Mud parameter 1
F F Mud parameter 2
F F Mud parameter 3
C F Water levels
C F Currents
F F Winds
F F Ice concentrations
F F Atmospheric momentum
F F Air density
F Assimilation data : Mean parameters
F Assimilation data : 1-D spectra
F Assimilation data : 2-D spectra
$
$ Time frame of calculations ----------------------------------------- $
$ - Starting time in yyyymmdd hhmmss format.
$ - Ending time in yyyymmdd hhmmss format.
$
20000101 000000
20000101 120000
$
$ Define output data ------------------------------------------------- $
$
$ Define output server mode. This is used only in the parallel version
$ of the model. To keep the input file consistent, it is always needed.
$ IOSTYP = 1 is generally recommended. IOSTYP > 2 may be more efficient
$ for massively parallel computations. Only IOSTYP = 0 requires a true
$ parallel file system like GPFS.
$
$ IOSTYP = 0 : No data server processes, direct access output from
$ each process (requires true parallel file system).
$ 1 : No data server process. All output for each type
$ performed by process that performs computations too.
$ 2 : Last process is reserved for all output, and does no
$ computing.
$ 3 : Multiple dedicated output processes.
$
1
$
$ Five output types are available (see below). All output types share
$ a similar format for the first input line:
$ - first time in yyyymmdd hhmmss format, output interval (s), and
$ last time in yyyymmdd hhmmss format (all integers).
$ Output is disabled by setting the output interval to 0.
$
$ ------------------------------------------------------------------- $
$
$ Type 1 : Fields of mean wave parameters
$ Standard line and line with logical flags to activate output
$ fields as defined in section 2.4 of the manual. The logical
$ flags are not supplied if no output is requested. The logical
$ flags can be placed on multiple consecutive lines. However,
$ the total number and order of the logical flags is fixed.
$ The raw data file is out_grd.ww3,
$ see w3iogo.ftn for additional doc.
$
20000101 000000 600 20000101 120000
$----------------------------------------------------------------
$ Output request flags identifying fields.
$
$ The table below provides a full definition of field output parameters
$ as well as flags indicating if they are available in different field
$ output output file types (ASCII, grib, NetCDF).
$ Further definitions are found in section 2.4 of the manual.
$
$ Selection of field outputs may be made in two ways:
$ F/T flags: first flag is set to F, requests made per group (1st line)
$ followed by parameter flags (total of 10 groups).
$ Namelists: first line is set to N, next line contains parameter
$ symbol as per table below.
$
$ Example of F/T flag use is given in this sample ww3_shel.inp, below.
$ For namelist usage, see the sample ww3_ounf.inp for an example.
$
$ ----------------------------------------
$ Output field parameter definitions table
$ ----------------------------------------
$
$ All parameters listed below are available in output file of the types
$ ASCII and NetCDF. If selected output file types are grads or grib,
$ some parameters may not be available. The first two columns in the
$ table below identify such cases by flags, cols 1 (GRB) and 2 (GXO)
$ refer to grib (ww3_grib) and grads (gx_outf), respectively.
$
$ Columns 3 and 4 provide group and parameter numbers per group.
$ Columns 5, 6 and 7 provide:
$ 5 - code name (internal)
$ 6 - output tags (names used is ASCII file extensions, NetCDF
$ variable names and namelist-based selection (see ww3_ounf.inp)
$ 7 - Long parameter name/definition
$
$ G G
$ R X Grp Param Code Output Parameter/Group
$ B O Numb Numbr Name Tag Definition
$ --------------------------------------------------
$ 1 Forcing Fields
$ -------------------------------------------------
$ T T 1 1 DW DPT Water depth.
$ T T 1 2 C[X,Y] CUR Current velocity.
$ T T 1 3 UA WND Wind speed.
$ T T 1 4 AS AST Air-sea temperature difference.
$ T T 1 5 WLV WLV Water levels.
$ T T 1 6 ICE ICE Ice concentration.
$ T T 1 7 IBG IBG Iceberg-induced damping.
$ T T 1 8 D50 D50 Median sediment grain size.
$ T T 1 9 IC1 IC1 Ice thickness.
$ T T 1 10 IC5 IC5 Ice flow diameter.
$ -------------------------------------------------
$ 2 Standard mean wave Parameters
$ -------------------------------------------------
$ T T 2 1 HS HS Wave height.
$ T T 2 2 WLM LM Mean wave length.
$ T T 2 3 T02 T02 Mean wave period (Tm02).
$ T T 2 4 T0M1 T0M1 Mean wave period (Tm0,-1).
$ T T 2 5 T01 T01 Mean wave period (Tm01).
$ T T 2 6 FP0 FP Peak frequency.
$ T T 2 7 THM DIR Mean wave direction.
$ T T 2 8 THS SPR Mean directional spread.
$ T T 2 9 THP0 DP Peak direction.
$ T T 2 10 HIG HIG Infragravity height
$ T T 2 11 STMAXE MXE Max surface elev (STE)
$ T T 2 12 STMAXD MXES St Dev of max surface elev (STE)
$ T T 2 13 HMAXE MXH Max wave height (STE)
$ T T 2 14 HCMAXE MXHC Max wave height from crest (STE)
$ T T 2 15 HMAXD SDMH St Dev of MXC (STE)
$ T T 2 16 HCMAXD SDMHC St Dev of MXHC (STE)
$ F T 2 17 WBT WBT Dominant wave breaking probability bT
$ -------------------------------------------------
$ 3 Spectral Parameters (first 5)
$ -------------------------------------------------
$ T T 3 1 EF EF Wave frequency spectrum
$ T T 3 2 TH1M TH1M Mean wave direction from a1,b2
$ T T 3 3 STH1M STH1M Directional spreading from a1,b2
$ T T 3 4 TH2M TH2M Mean wave direction from a2,b2
$ T T 3 5 STH2M STH2M Directional spreading from a2,b2
$ T T 3 6 WN WN Wavenumber array
$ -------------------------------------------------
$ 4 Spectral Partition Parameters
$ -------------------------------------------------
$ T T 4 1 PHS PHS Partitioned wave heights.
$ T T 4 2 PTP PTP Partitioned peak period.
$ T T 4 3 PLP PLP Partitioned peak wave length.
$ T T 4 4 PDIR PDIR Partitioned mean direction.
$ T T 4 5 PSI PSPR Partitioned mean directional spread.
$ T T 4 6 PWS PWS Partitioned wind sea fraction.
$ T T 4 7 PTHP0 PDP Peak wave direction of partition.
$ T T 4 8 PQP PQP Goda peakdedness parameter of partition.
$ T T 4 9 PPE PPE JONSWAP peak enhancement factor of partition.
$ T T 4 10 PGW PGW Gaussian frequency width of partition.
$ T T 4 11 PSW PSW Spectral width of partition.
$ T T 4 12 PTM1 PTM10 Mean wave period (m-1,0) of partition.
$ T T 4 13 PT1 PT01 Mean wave period (m0,1) of partition.
$ T T 4 14 PT2 PT02 Mean wave period (m0,2) of partition.
$ T T 4 15 PEP PEP Peak spectral density of partition.
$ T T 4 16 PWST TWS Total wind sea fraction.
$ T T 4 17 PNR PNR Number of partitions.
$ -------------------------------------------------
$ 5 Atmosphere-waves layer
$ -------------------------------------------------
$ T T 5 1 UST UST Friction velocity.
$ F T 5 2 CHARN CHA Charnock parameter
$ F T 5 3 CGE CGE Energy flux
$ F T 5 4 PHIAW FAW Air-sea energy flux
$ F T 5 5 TAUWI[X,Y] TAW Net wave-supported stress
$ F T 5 6 TAUWN[X,Y] TWA Negative part of the wave-supported stress
$ F F 5 7 WHITECAP WCC Whitecap coverage
$ F F 5 8 WHITECAP WCF Whitecap thickness
$ F F 5 9 WHITECAP WCH Mean breaking height
$ F F 5 10 WHITECAP WCM Whitecap moment
$ F F 5 11 FWS FWS Wind sea mean period
$ -------------------------------------------------
$ 6 Wave-ocean layer
$ -------------------------------------------------
$ F F 6 1 S[XX,YY,XY] SXY Radiation stresses.
$ F F 6 2 TAUO[X,Y] TWO Wave to ocean momentum flux
$ F F 6 3 BHD BHD Bernoulli head (J term)
$ F F 6 4 PHIOC FOC Wave to ocean energy flux
$ F F 6 5 TUS[X,Y] TUS Stokes transport
$ F F 6 6 USS[X,Y] USS Surface Stokes drift
$ F F 6 7 [PR,TP]MS P2S Second-order sum pressure
$ F F 6 8 US3D USF Spectrum of surface Stokes drift
$ F F 6 9 P2SMS P2L Micro seism source term
$ F F 6 10 TAUICE TWI Wave to sea ice stress
$ F F 6 11 PHICE FIC Wave to sea ice energy flux
$ F F 6 12 USSP USP Partitioned surface Stokes drift
$ -------------------------------------------------
$ 7 Wave-bottom layer
$ -------------------------------------------------
$ F F 7 1 ABA ABR Near bottom rms amplitides.
$ F F 7 2 UBA UBR Near bottom rms velocities.
$ F F 7 3 BEDFORMS BED Bedforms
$ F F 7 4 PHIBBL FBB Energy flux due to bottom friction
$ F F 7 5 TAUBBL TBB Momentum flux due to bottom friction
$ -------------------------------------------------
$ 8 Spectrum parameters
$ -------------------------------------------------
$ F F 8 1 MSS[X,Y] MSS Mean square slopes
$ F F 8 2 MSC[X,Y] MSC Spectral level at high frequency tail
$ F F 8 3 WL02[X,Y] WL02 East/X North/Y mean wavelength compon
$ F F 8 4 ALPXT AXT Correl sea surface gradients (x,t)
$ F F 8 5 ALPYT AYT Correl sea surface gradients (y,t)
$ F F 8 6 ALPXY AXY Correl sea surface gradients (x,y)
$ -------------------------------------------------
$ 9 Numerical diagnostics
$ -------------------------------------------------
$ T T 9 1 DTDYN DTD Average time step in integration.
$ T T 9 2 FCUT FC Cut-off frequency.
$ T T 9 3 CFLXYMAX CFX Max. CFL number for spatial advection.
$ T T 9 4 CFLTHMAX CFD Max. CFL number for theta-advection.
$ F F 9 5 CFLKMAX CFK Max. CFL number for k-advection.
$ -------------------------------------------------
$ 10 User defined
$ -------------------------------------------------
$ F F 10 1 U1 User defined #1. (requires coding ...)
$ F F 10 2 U2 User defined #1. (requires coding ...)
$ -------------------------------------------------
$
$ Section 4 consist of a set of fields, index 0 = wind sea, index
$ 1:NOSWLL are first NOSWLL swell fields.
$
$ Actual active parameter selection section
$
$ (1) Forcing Fields
T
$ DPT CUR WND AST WLV ICE IBG D50 IC1 IC5
T T F T T F F F F F
$ (2) Standard mean wave Parameters
T
$ HS LM T02 T0M1 T01 FP DIR SPR DP
T T T T T T T T T
$ (3) Frequency-dependent parameters
T
$ EF TH1M STH1M TH2M STH2M WN
F F F F F F
$ (4) Spectral Partition Parameters
T
$ PHS PTP PLP PDIR PSPR PWS TWS PNR
T T T T T T T T
$ (5) Atmosphere-waves layer
T
$ UST CHA CGE FAW TAW TWA WCC WCF WCH WCM
T T T T T T T T T T
$ (6) Wave-Ocean layer
T
$ SXY TWO BHD FOC TUS USS P2S USF P2L TWI FIC
T T T T T T T F F F F
$ (7) Wave-bottom layer
T
$ ABR UBR BED FBB TBB
T T T T T
$ (8) Spectrum parameters
T
$ MSS MSC WL02 AXT AYT AXY
T T T T T T
$ (9) Numerical diagnostics
T
$ DTD FC CFX CFD CFK
T T T T T
$ (10) User defined (NOEXTR flags needed)
F
$ U1 U2
$ T T
$
$----------------------------------------------------------------
$
$ Type 2 : Point output
$ Standard line and a number of lines identifying the
$ longitude, latitude and name (C*10) of output points.
$ The list is closed by defining a point with the name
$ 'STOPSTRING'. No point info read if no point output is
$ requested (i.e., no 'STOPSTRING' needed).
$ Example for spherical grid.
$ The raw data file is out_pnt.ww3,
$ see w3iogo.ftn for additional doc.
$
$ NOTE : Spaces may be included in the name, but this is not
$ advised, because it will break the GrADS utility to
$ plots spectra and source terms, and will make it more
$ difficult to use point names in data files.
$
20000101 000000 3600 20000101 120000
$
1300. 2200. 'point1'
1450. 2200. 'point2'
1450. 1500. 'point3'
$
0.0 0.0 'STOPSTRING'
$
$ Type 3 : Output along track.
$ Flag for formatted input file.
$ The data files are track_i.ww3 and
$ track_o.ww3, see w3iotr.ftn for ad. doc.
$
20000101 000000 3600 20000101 120000
F
$
$ Type 4 : Restart files (no additional data required).
$ The data file is restartN.ww3, see
$ w3iors.ftn for additional doc.
$
20000101 000000 3600 20000101 120000
$
$ Type 5 : Boundary data (no additional data required).
$ The data file is nestN.ww3, see
$ w3iobcmd.ftn for additional doc.
$
20000101 000000 3600 20000101 120000
$
$ Type 6 : Separated wave field data (dummy for now).
$ First, last step IX and IY, flag for formatted file
$
20000101 000000 3600 20000101 120000
0 999 1 0 999 1 F
$
$ Type 7 : Coupling. (must be fully commented if not used with switch COU)
$ Namelist type selection is used here.
$ Diagnostic fields to exchange. (see namcouple for more information)
$
$ 19680606 000000 3600 20010102 000000
$ N
$
$ - Sent fields by ww3:
$ - Ocean model : T0M1 OCHA OHS DIR BHD TWO UBR FOC TAW TUS USS LM DRY
$ - Atmospheric model : ACHA AHS TP (or FP) FWS
$ - Ice model : IC5 TWI
$
$ CHA
$
$ - Received fields by ww3:
$ - Ocean model : SSH CUR
$ - Atmospheric model : WND
$ - Ice model : ICE IC1 IC5
$
$ WND
$
$ Homogeneous field data --------------------------------------------- $
$ Homogeneous fields can be defined by a list of lines containing an ID
$ string 'LEV' 'CUR' 'WND', date and time information (yyyymmdd
$ hhmmss), value (S.I. units), direction (current and wind, oceanogr.
$ convention degrees)) and air-sea temperature difference (degrees C).
$ 'STP' is mandatory stop string.
$ Also defined here are the speed with which the grid is moved
$ continuously, ID string 'MOV', parameters as for 'CUR'.
$
$ 'LEV' 19680606 010000 1.00
$ 'CUR' 19680606 073125 2.0 25.
$ 'WND' 19680606 000000 20. 145. 2.0
$ 'MOV' 19680606 013000 4.0 25.
'STP'
$
$ -------------------------------------------------------------------- $
$ End of input file $
$ -------------------------------------------------------------------- $

@huyquangtranaus
Copy link
Author

huyquangtranaus commented Nov 8, 2024

Hi John @jcwarner-usgs , is there any more insight? Have you recently tested the Inlet_test/WW3 test case yet?

Thank you

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants