Course Material Description Calendar Guidelines Prof. Bahrak's Youtube Channel Course Schedule Week Lectures Videos/Additional Resources Assignments 1 Data Science Lifecycle Python for Data Science 2 Sampling and Scientific Studies Sampling Correlation and Causation Sampling Strategies Observational vs. Experimental 3 Statistical Charts Numerical Variables Visualization Shape of Numerical Distributions Data Transformation Categorical Variables Visualization CA0 4 Review of Probability Probability Definition Independence Conditional Probability Random Variable Normal Distribution Q-Q Plot CA1 5 Foundations for Inference Central Limit Theorem Confidence Interval Hypothesis Testing Types of Error 6 Linear Regression Introduction to Linear Regression Hypothesis Testing for Linear Regression Multiple Linear Regression CA2 7 SQL-1 SQL-2 Data Preprocessing SQL Data Cleaning and EDA CA3 Project-Phase 0 8 Modeling Gradient Descent Modeling Gradient Descent-1 Gradient Descent-2 CA4 9 Sklearn and Feature Engineering CA5 10 Logistic Regression-2 Cross-Validation & Regularization Cross Validation & Regularization Performance Metrics Project-Phase 1 11 SVM & KNN Decision Tree & Random Forest Decision Tree SVM & KNN 12 Dimensionality Reduction Unsupervised Learning-1 Dimensionality Reduction PCA Random Projection LLE K-Means Choosing Correct Number of Clusters Clustering Applications CA6 13 Neural Networks Natural Language Processing A Guide to Data Visualization Neural Networks NLP-1 NLP-2 CA7 14 Data Science Applications A Guide to Feature Extraction Project-Phase 2 Project-Presentation