Skip to content

Latest commit

 

History

History
25 lines (22 loc) · 6.9 KB

readme.md

File metadata and controls

25 lines (22 loc) · 6.9 KB

Course Material

Course Schedule

Week Lectures Videos/Additional Resources Assignments
1 Data Science Lifecycle Python for Data Science
2 Sampling and Scientific Studies Sampling
Correlation and Causation
Sampling Strategies
Observational vs. Experimental
3 Statistical Charts Numerical Variables Visualization
Shape of Numerical Distributions
Data Transformation
Categorical Variables Visualization
CA0
4 Review of Probability Probability Definition
Independence
Conditional Probability
Random Variable
Normal Distribution
Q-Q Plot
CA1
5 Foundations for Inference Central Limit Theorem
Confidence Interval
Hypothesis Testing
Types of Error
6 Linear Regression Introduction to Linear Regression
Hypothesis Testing for Linear Regression
Multiple Linear Regression
CA2
7 SQL-1
SQL-2
Data Preprocessing
SQL
Data Cleaning and EDA
CA3
Project-Phase 0
8 Modeling
Gradient Descent
Modeling
Gradient Descent-1
Gradient Descent-2
CA4
9 Sklearn and Feature Engineering CA5
10 Logistic Regression-2
Cross-Validation & Regularization
Cross Validation & Regularization
Performance Metrics
Project-Phase 1
11 SVM & KNN
Decision Tree & Random Forest
Decision Tree
SVM & KNN
12 Dimensionality Reduction
Unsupervised Learning-1
Dimensionality Reduction
PCA
Random Projection
LLE
K-Means
Choosing Correct Number of Clusters
Clustering Applications
CA6
13 Neural Networks
Natural Language Processing
A Guide to Data Visualization
Neural Networks
NLP-1
NLP-2
CA7
14 Data Science Applications A Guide to Feature Extraction Project-Phase 2
Project-Presentation