forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·226 lines (183 loc) · 7.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gym
import numpy as np
import os
import queue
import six
import time
import threading
import parl
from atari_model import AtariModel
from atari_agent import AtariAgent
from collections import defaultdict
from parl.env.atari_wrappers import wrap_deepmind
from parl.utils import logger, get_gpu_count, summary
from parl.utils.scheduler import PiecewiseScheduler
from parl.utils.time_stat import TimeStat
from parl.utils.window_stat import WindowStat
from parl.utils import machine_info
from actor import Actor
class Learner(object):
def __init__(self, config):
self.config = config
#=========== Create Agent ==========
env = gym.make(config['env_name'])
env = wrap_deepmind(env, dim=config['env_dim'], obs_format='NCHW')
obs_shape = env.observation_space.shape
act_dim = env.action_space.n
self.config['obs_shape'] = obs_shape
self.config['act_dim'] = act_dim
model = AtariModel(act_dim)
algorithm = parl.algorithms.A3C(
model, vf_loss_coeff=config['vf_loss_coeff'])
self.agent = AtariAgent(algorithm, config)
if machine_info.is_gpu_available():
assert get_gpu_count() == 1, 'Only support training in single GPU,\
Please set environment variable: `export CUDA_VISIBLE_DEVICES=[GPU_ID_TO_USE]` .'
#========== Learner ==========
self.total_loss_stat = WindowStat(100)
self.pi_loss_stat = WindowStat(100)
self.vf_loss_stat = WindowStat(100)
self.entropy_stat = WindowStat(100)
self.lr = None
self.entropy_coeff = None
self.learn_time_stat = TimeStat(100)
self.start_time = None
#========== Remote Actor ===========
self.remote_count = 0
self.sample_data_queue = queue.Queue()
self.remote_metrics_queue = queue.Queue()
self.sample_total_steps = 0
self.params_queues = []
self.create_actors()
def create_actors(self):
""" Connect to the cluster and start sampling of the remote actor.
"""
parl.connect(self.config['master_address'])
logger.info('Waiting for {} remote actors to connect.'.format(
self.config['actor_num']))
for i in six.moves.range(self.config['actor_num']):
params_queue = queue.Queue()
self.params_queues.append(params_queue)
self.remote_count += 1
logger.info('Remote actor count: {}'.format(self.remote_count))
remote_thread = threading.Thread(
target=self.run_remote_sample, args=(params_queue, ))
remote_thread.setDaemon(True)
remote_thread.start()
logger.info('All remote actors are ready, begin to learn.')
self.start_time = time.time()
def run_remote_sample(self, params_queue):
""" Sample data from remote actor and update parameters of remote actor.
"""
remote_actor = Actor(self.config)
cnt = 0
while True:
latest_params = params_queue.get()
remote_actor.set_weights(latest_params)
batch = remote_actor.sample()
self.sample_data_queue.put(batch)
cnt += 1
if cnt % self.config['get_remote_metrics_interval'] == 0:
metrics = remote_actor.get_metrics()
if metrics:
self.remote_metrics_queue.put(metrics)
def step(self):
"""
1. kick off all actors to synchronize parameters and sample data;
2. collect sample data of all actors;
3. update parameters.
"""
latest_params = self.agent.get_weights()
for params_queue in self.params_queues:
params_queue.put(latest_params)
train_batch = defaultdict(list)
for i in range(self.config['actor_num']):
sample_data = self.sample_data_queue.get()
for key, value in sample_data.items():
train_batch[key].append(value)
self.sample_total_steps += sample_data['obs'].shape[0]
for key, value in train_batch.items():
train_batch[key] = np.concatenate(value)
with self.learn_time_stat:
total_loss, pi_loss, vf_loss, entropy, lr, entropy_coeff = self.agent.learn(
obs_np=train_batch['obs'],
actions_np=train_batch['actions'],
advantages_np=train_batch['advantages'],
target_values_np=train_batch['target_values'])
self.total_loss_stat.add(total_loss)
self.pi_loss_stat.add(pi_loss)
self.vf_loss_stat.add(vf_loss)
self.entropy_stat.add(entropy)
self.lr = lr
self.entropy_coeff = entropy_coeff
def log_metrics(self):
""" Log metrics of learner and actors
"""
if self.start_time is None:
return
metrics = []
while True:
try:
metric = self.remote_metrics_queue.get_nowait()
metrics.append(metric)
except queue.Empty:
break
episode_rewards, episode_steps = [], []
for x in metrics:
episode_rewards.extend(x['episode_rewards'])
episode_steps.extend(x['episode_steps'])
max_episode_rewards, mean_episode_rewards, min_episode_rewards, \
max_episode_steps, mean_episode_steps, min_episode_steps =\
None, None, None, None, None, None
if episode_rewards:
mean_episode_rewards = np.mean(np.array(episode_rewards).flatten())
max_episode_rewards = np.max(np.array(episode_rewards).flatten())
min_episode_rewards = np.min(np.array(episode_rewards).flatten())
mean_episode_steps = np.mean(np.array(episode_steps).flatten())
max_episode_steps = np.max(np.array(episode_steps).flatten())
min_episode_steps = np.min(np.array(episode_steps).flatten())
metric = {
'sample_steps': self.sample_total_steps,
'max_episode_rewards': max_episode_rewards,
'mean_episode_rewards': mean_episode_rewards,
'min_episode_rewards': min_episode_rewards,
'max_episode_steps': max_episode_steps,
'mean_episode_steps': mean_episode_steps,
'min_episode_steps': min_episode_steps,
'total_loss': self.total_loss_stat.mean,
'pi_loss': self.pi_loss_stat.mean,
'vf_loss': self.vf_loss_stat.mean,
'entropy': self.entropy_stat.mean,
'learn_time_s': self.learn_time_stat.mean,
'elapsed_time_s': int(time.time() - self.start_time),
'lr': self.lr,
'entropy_coeff': self.entropy_coeff,
}
for key, value in metric.items():
if value is not None:
summary.add_scalar(key, value, self.sample_total_steps)
logger.info(metric)
def should_stop(self):
return self.sample_total_steps >= self.config['max_sample_steps']
if __name__ == '__main__':
from a2c_config import config
learner = Learner(config)
assert config['log_metrics_interval_s'] > 0
while not learner.should_stop():
start = time.time()
while time.time() - start < config['log_metrics_interval_s']:
learner.step()
learner.log_metrics()