-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelApplicator.jl
152 lines (115 loc) · 4.34 KB
/
ModelApplicator.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
AbstractModelApplicator(x, ϕ)
Abstraction of applying a machine learning model at covariate matrix, `x`,
using parameters, `ϕ`. It returns a matrix of predictions with the same
number of rows as in `x`.
Constructors for specifics are defined in extension packages.
Each constructor takes a special type of machine learning model and returns
a tuple with two components:
- The applicator
- a sample parameter vector (type depends on the used ML-framework)
Implemented are
- `construct_SimpleChainsApplicator`
- `construct_FluxApplicator`
- `construct_LuxApplicator`
"""
abstract type AbstractModelApplicator end
function apply_model end
(app::AbstractModelApplicator)(x, ϕ) = apply_model(app, x, ϕ)
"""
NullModelApplicator()
Model applicator that returns its inputs. Used for testing.
"""
struct NullModelApplicator <: AbstractModelApplicator end
function apply_model(app::NullModelApplicator, x, ϕ)
return x
end
"""
construct_ChainsApplicator([rng::AbstractRNG,] chain, float_type)
"""
function construct_ChainsApplicator end
function construct_ChainsApplicator(chain, float_type::DataType; kwargs...)
construct_ChainsApplicator(Random.default_rng(), chain, float_type; kwargs...)
end
# function construct_SimpleChainsApplicator end
# function construct_FluxApplicator end
# function construct_LuxApplicator end
"""
construct_3layer_MLApplicator(
rng::AbstractRNG, prob::HVI.AbstractHybridProblem, <ml_engine>;
scenario::NTuple = ())
`ml_engine` usually is of type `Val{Symbol}`, e.g. Val(:Flux). See `select_ml_engine`.
"""
function construct_3layer_MLApplicator end
"""
select_ml_engine(;scenario)
Returns a value type `Val{:Symbol}` to dispatch on the machine learning engine to use.
- defaults to `Val(:SimpleChains)`
- `:use_Lux ∈ scenario -> Val(:Lux)`
- `:use_Flux ∈ scenario -> Val(:Flux)`
"""
function select_ml_engine(;scenario)
if :use_Lux ∈ scenario
return Val(:Lux)
elseif :use_Flux ∈ scenario
return Val(:Flux)
else
# default
return Val(:SimpleChains)
end
end
"""
MagnitudeModelApplicator(app, y0)
Wrapper around AbstractModelApplicator that multiplies the prediction
by the absolute inverse of an initial estimate of the prediction.
This helps to keep raw predictions and weights in a similar magnitude.
"""
struct MagnitudeModelApplicator{M,A} <: AbstractModelApplicator
app::A
multiplier::M
end
function apply_model(app::MagnitudeModelApplicator, x, ϕ)
#@show size(x), size(ϕ), app.multiplier
@assert eltype(app.multiplier) == eltype(ϕ)
apply_model(app.app, x, ϕ) .* app.multiplier
end
"""
NormalScalingModelApplicator(app, μ, σ)
NormalScalingModelApplicator(app, priors, transM)
Wrapper around AbstractModelApplicator that transforms each output
(assumed in [0..1], usch as output of logistic activation function)
to a quantile of a Normal distribution.
Length of μ, σ must correspond to the number of outputs of the wrapped ModelApplicator.
This helps to keep raw ML-predictions (in confidence bounds) and weights in a similar magnitude.
Compared to specifying bounds, this allows for the possibility (although harder to converge)
far beyond the confidence bounds.
The second constructor fits a normal distribution of the inverse-transformed 5% and 95%
quantiles of prior distributions.
"""
struct NormalScalingModelApplicator{VF,A} <: AbstractModelApplicator
app::A
μ::VF
σ::VF
end
function NormalScalingModelApplicator(
app::AbstractModelApplicator, priors::AbstractVector{<:Distribution}, transM, ET::Type)
# need to apply transform to entire vectors each of lowers and uppers
θq = ([quantile(d, q) for d in priors] for q in (0.05, 0.95))
ζlower, ζupper = inverse(transM).(θq)
#ipar = first(axes(ζlower,1))
pars = map(axes(ζlower,1)) do ipar
dζ = fit(Normal, @qp_l(ζlower[ipar]), @qp_u(ζupper[ipar]))
params(dζ)
end
# use collect to make it an array that works with gpu
μ = collect(ET, first.(pars))
σ = collect(ET, last.(pars))
NormalScalingModelApplicator(app, μ, σ)
end
function apply_model(app::NormalScalingModelApplicator, x, ϕ)
y_perc = apply_model(app.app, x, ϕ)
# @show typeof(app.μ)
# @show typeof(ϕ)
@assert eltype(app.μ) == eltype(ϕ)
norminvcdf.(app.μ, app.σ, y_perc) # from StatsFuns
end