-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlot_Emissions.py
executable file
·170 lines (170 loc) · 5.44 KB
/
Plot_Emissions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Python module to selected datasets
#
# Garry Hayman
# Centre for Ecology and Hydrology
# December 2011
#
# Contains
#
import sys
import numpy as np
from numpy import arange,dtype
import calculate_area
import data_netCDF
import output_netCDF_Sciamachy
import output_netCDF_UM
import plot_map
#
iINTER = sys.argv[1]
DEBUG = sys.argv[2]
sRESOL = sys.argv[3]
SDATE = sys.argv[4]
START_YEAR = int(sys.argv[5])
END_YEAR = int(sys.argv[6])
iDISPLAY = sys.argv[7]
DATA_MIN = float(sys.argv[8])
DATA_MAX = float(sys.argv[9])
NO_SECS_MONTH = 30.0*24.0*60.0*60.0
#
# Assign parameters
#
NYEARS = END_YEAR-START_YEAR+1
NMONTHS = 12
NTIMES = NMONTHS
NETCDF_DIR = '/prj/ALANIS/UM_Modelling/EMISSIONS/'
OUT_DIR = '/prj/ALANIS/z_TEST_PLOTS/'
TIME_NAME = 't'
SET_UNDER = 'lightgrey'
#
# Select output option
#
PLOT_TITLE_0 = 'CH4 Emissions '
PLOT_LABEL = 'CH4 Emissions (in Mtonnes CH4 per annum)'
MISS_DATA = -999.9
DAYS_MONTH = [ 31 , 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30 ]
#
LAT_START = -90.0
LAT_END = 90.0
DEL_LAT = 30.0
DLAT = LAT_END-LAT_START
#
LONG_START = 0.0
LONG_END = 360.0
DEL_LONG = 30.0
DLONG = LONG_END-LONG_START
#
if sRESOL=='UM':
RESOL_LONG = 1.875
RESOL_LAT = 1.250
NLAT = int((LAT_END-LAT_START)/RESOL_LAT)+1
NLONG = int((LONG_END-LONG_START)/RESOL_LONG)
else:
RESOL_LONG = float(sRESOL)
RESOL_LAT = float(sRESOL)
NLAT = int((LAT_END-LAT_START)/RESOL_LAT)
NLONG = int((LONG_END-LONG_START)/RESOL_LONG)
#
# - Create longitude and latitude values for output (Note these are at centre of grid squares)
#
LONG = LONG_START + 0.5 + DLONG*arange(NLONG,dtype='float32')
LAT = LAT_START + 0.5 + DLAT*arange(NLAT,dtype='float32')
#
if LONG_END == 360.0:
LONG_PLOTS = -180.0
LONG_PLOTE = 180.0
#
# Calculate area of grid squares
#
NLONG_A,NLAT_A,LONG_A,LAT_A,AREA= \
calculate_area.calculate_area_var_UM(LONG_START,DLONG,RESOL_LONG,LAT_START,DLAT,RESOL_LAT,'N')
if DEBUG == 'Y': print(NLONG_A,NLAT_A,LONG_A,LAT_A)
#
# Input data
#
# (a) All CH4 sources
#
FILE_CDF_IN = NETCDF_DIR + 'StdTrop_AR5_surfems_2000.nc'
print(FILE_CDF_IN)
#
DATA_NAME = 'longitude'
DIMS,LONG,TIME_IN = data_netCDF.data_netCDF_array(FILE_CDF_IN,DATA_NAME,TIME_NAME)
if DEBUG == 'Y': print(LONG.min(),LONG.max())
#
DATA_NAME = 'latitude'
DIMS,LAT,TIME_IN = data_netCDF.data_netCDF_array(FILE_CDF_IN,DATA_NAME,TIME_NAME)
if DEBUG == 'Y': print(LAT.min(),LAT.max())
#
DATA_NAME = 'ch4_surf_emiss'
DIMS,CH4_EMISS_ALL,TIME_IN = data_netCDF.data_netCDF_array(FILE_CDF_IN,DATA_NAME,TIME_NAME)
if DEBUG == 'Y': print(CH4_EMISS_ALL.shape,CH4_EMISS_ALL.min(),CH4_EMISS_ALL.max())
#
# (b) Without CH4 wetland emissions
#
FILE_CDF_IN = NETCDF_DIR + 'StdTrop_AR5_surfems_nowetl_2000.nc'
print(FILE_CDF_IN)
#
DATA_NAME = 'ch4_surf_emiss'
DIMS,CH4_EMISS_NOWET,TIME_IN = data_netCDF.data_netCDF_array(FILE_CDF_IN,DATA_NAME,TIME_NAME)
if DEBUG == 'Y': print(CH4_EMISS_NOWET.shape,CH4_EMISS_NOWET.min(),CH4_EMISS_NOWET.max())
#
CH4_EMISS_WET= CH4_EMISS_ALL-CH4_EMISS_NOWET
#
for iTIME in range(CH4_EMISS_ALL.shape[0]):
#
iMONTH = iTIME % 12
iYEAR = int(iTIME/12)
if DEBUG=='Y': print(START_YEAR,iYEAR,iMONTH)
#
SYEAR = str(START_YEAR+iYEAR)
SMONTH = '%02d' % (iMONTH+1)
#
FILE_PLOT = OUT_DIR + 'CH4_Emissions_All_' + SYEAR + SMONTH + '_' + SDATE + '.png'
PLOT_TITLE = PLOT_TITLE_0 + ' (all sources) for ' + SYEAR + SMONTH
print('%4d %s' % (iTIME+1,FILE_PLOT))
#
DATA_PLOT = CH4_EMISS_ALL[iTIME,0,:,:]*AREA[:,:]*NO_SECS_MONTH/1.0E+09
print(DATA_PLOT.shape,DATA_PLOT.min(),DATA_PLOT.max())
if LONG_END == 360.0:
DATA_PLOT = plot_map.switch_long(DATA_PLOT)
#
plot_map.plot_map(DATA_PLOT,LONG_PLOTS,LONG_PLOTE,DEL_LONG, \
LAT_START,LAT_END,DEL_LAT,DATA_MAX,DATA_MIN, \
PLOT_TITLE,PLOT_LABEL,FILE_PLOT,iDISPLAY,SET_UNDER,DEBUG)
#
FILE_PLOT = OUT_DIR + 'CH4_Emissions_nowet_' + SYEAR + SMONTH + '_' + SDATE + '.png'
PLOT_TITLE = PLOT_TITLE_0 + ' (all sources except wetlands) for ' + SYEAR + SMONTH
print('%4d %s' % (iTIME+1,FILE_PLOT))
#
DATA_PLOT = CH4_EMISS_NOWET[iTIME,0,:,:]*AREA[:,:]*NO_SECS_MONTH/1.0E+09
print(DATA_PLOT.shape,DATA_PLOT.min(),DATA_PLOT.max())
if LONG_END == 360.0:
DATA_PLOT = plot_map.switch_long(DATA_PLOT)
#
plot_map.plot_map(DATA_PLOT,LONG_PLOTS,LONG_PLOTE,DEL_LONG, \
LAT_START,LAT_END,DEL_LAT,DATA_MAX,DATA_MIN, \
PLOT_TITLE,PLOT_LABEL,FILE_PLOT,iDISPLAY,SET_UNDER,DEBUG)
#
FILE_PLOT = OUT_DIR + 'CH4_Emissions_wet_' + SYEAR + SMONTH + '_' + SDATE + '.png'
PLOT_TITLE = PLOT_TITLE_0 + ' (wetlands) for ' + SYEAR + SMONTH
print('%4d %s' % (iTIME+1,FILE_PLOT))
#
DATA_PLOT = CH4_EMISS_WET[iTIME,0,:,:]*AREA[:,:]*NO_SECS_MONTH/1.0E+09
print(DATA_PLOT.shape,DATA_PLOT.min(),DATA_PLOT.max())
if LONG_END == 360.0:
DATA_PLOT = plot_map.switch_long(DATA_PLOT)
#
plot_map.plot_map(DATA_PLOT,LONG_PLOTS,LONG_PLOTE,DEL_LONG, \
LAT_START,LAT_END,DEL_LAT,DATA_MAX,DATA_MIN, \
PLOT_TITLE,PLOT_LABEL,FILE_PLOT,iDISPLAY,SET_UNDER,DEBUG)
#
# Output as netCDF
#
# - Call routine to output Column CH4 as netCDF
#
# FILE_CDF_OUT = NETCDF_DIR + JOB_ID + '_' + SYEAR + '_column_ch4_' + SDATE + '.nc'
# VAR_INFO = ['XCH4','float32']
#
# output_netCDF_Sciamachy.output_netCDF_Sciamachy(FILE_CDF_OUT,VAR_INFO,VAR_DATA_OUT, \
# TIME_CDF,LONG,LAT,NLONG,NLAT,NTIMES,START_YEAR,MISS_DATA,DEBUG)
#
# End of Program