-
Notifications
You must be signed in to change notification settings - Fork 63
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
No method matching Duplicated(::Base.MappingRF{...}, ::Base.RefValue{Base.MappingRF{…}}) #1812
Comments
This one is a bit too complicated to debug directly, can you create a MWE
that removes as much of tiring as possible (and ideally contains direct
function defns without macros)
…On Thu, Sep 12, 2024, 7:09 AM Markus Hauru ***@***.***> wrote:
MWE:
using Random: randnusing Enzyme: Enzymeusing Turing: Turing
Enzyme.API.runtimeActivity!(true)
***@***.*** function MvDirichletWithManualAccumulation(w, doc)
β ~ Turing.filldist(Turing.Dirichlet([1.0, 1.0]), 2)
log_product = log.(β)
***@***.***! sum(log_product[CartesianIndex.(w, doc)])end
model = MvDirichletWithManualAccumulation([1, 1, 1, 1], [1, 1, 2, 2])
ctx = Turing.DefaultContext()
vi = Turing.VarInfo(model)
vi_linked = Turing.link(vi, model)
ldp = Turing.LogDensityFunction(vi_linked, model, ctx)
f = Base.Fix1(Turing.LogDensityProblems.logdensity, ldp)
d = Turing.LogDensityProblems.dimension(ldp)
x = randn(d)
Enzyme.gradient(Enzyme.Reverse, Enzyme.Const(f), x)
Output:
ERROR: LoadError: MethodError: no method matching EnzymeCore.Duplicated(::Base.MappingRF{Base.Fix1{…}, Base.BottomRF{…}}, ::Base.RefValue{Base.MappingRF{…}})
Closest candidates are:
EnzymeCore.Duplicated(::T1, ::T1) where T1
@ EnzymeCore ~/.julia/packages/EnzymeCore/jSKtE/src/EnzymeCore.jl:66
EnzymeCore.Duplicated(::T1, ::T1, ::Bool) where T1
@ EnzymeCore ~/.julia/packages/EnzymeCore/jSKtE/src/EnzymeCore.jl:66
Stacktrace:
[1] runtime_generic_augfwd(activity::Type{…}, width::Val{…}, ModifiedBetween::Val{…}, RT::Val{…}, f::Base.MappingRF{…}, df::Base.RefValue{…}, primal_1::Base._InitialValue, shadow_1_1::Nothing, primal_2::SubArray{…}, shadow_2_1::SubArray{…})
@ Enzyme.Compiler ~/.julia/packages/Enzyme/TiboG/src/rules/jitrules.jl:338
[2] _foldl_impl
@ ./reduce.jl:58
[3] foldl_impl
@ ./reduce.jl:48 [inlined]
[4] foldl_impl
@ ./reduce.jl:0 [inlined]
[5] augmented_julia_foldl_impl_8766_inner_1wrap
@ ./reduce.jl:0
[6] macro expansion
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:7187 [inlined]
[7] enzyme_call
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:6794 [inlined]
[8] AugmentedForwardThunk
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:6682 [inlined]
[9] runtime_generic_augfwd(activity::Type{…}, width::Val{…}, ModifiedBetween::Val{…}, RT::Val{…}, f::typeof(Base.foldl_impl), df::Nothing, primal_1::Base.MappingRF{…}, shadow_1_1::Base.RefValue{…}, primal_2::Base._InitialValue, shadow_2_1::Nothing, primal_3::Distributions.EachVariate{…}, shadow_3_1::Distributions.EachVariate{…})
@ Enzyme.Compiler ~/.julia/packages/Enzyme/TiboG/src/rules/jitrules.jl:338
[10] mapfoldl_impl
@ ./reduce.jl:44 [inlined]
[11] mapfoldl
@ ./reduce.jl:175 [inlined]
[12] _mapreduce
@ ./reduce.jl:453 [inlined]
[13] _mapreduce_dim
@ ./reducedim.jl:365 [inlined]
[14] mapreduce
@ ./reducedim.jl:357 [inlined]
[15] #_sum#831
@ ./reducedim.jl:1015 [inlined]
[16] augmented_julia___sum_831_8532_inner_1wrap
@ ./reducedim.jl:0
[17] macro expansion
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:7187 [inlined]
[18] enzyme_call
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:6794 [inlined]
[19] AugmentedForwardThunk
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:6682 [inlined]
[20] runtime_generic_augfwd(activity::Type{…}, width::Val{…}, ModifiedBetween::Val{…}, RT::Val{…}, f::Base.var"##_sum#831", df::Nothing, ***@***.***{}, shadow_1_1::Nothing, primal_2::typeof(Base._sum), shadow_2_1::Nothing, primal_3::Base.Fix1{…}, shadow_3_1::Base.RefValue{…}, primal_4::Distributions.EachVariate{…}, shadow_4_1::Distributions.EachVariate{…}, primal_5::Colon, shadow_5_1::Nothing)
@ Enzyme.Compiler ~/.julia/packages/Enzyme/TiboG/src/rules/jitrules.jl:338
[21] _sum
@ ./reducedim.jl:1015 [inlined]
[22] sum
@ ./reducedim.jl:1011 [inlined]
[23] loglikelihood
@ ~/.julia/packages/Distributions/nmUhn/src/common.jl:458 [inlined]
[24] _logpdf
@ ~/.julia/packages/DistributionsAD/1Mxge/src/filldist.jl:97 [inlined]
[25] logpdf
@ ~/.julia/packages/Distributions/nmUhn/src/common.jl:263 [inlined]
[26] invlink_with_logpdf
@ ~/.julia/packages/DynamicPPL/DvdZw/src/abstract_varinfo.jl:856
[27] invlink_with_logpdf
@ ~/.julia/packages/DynamicPPL/DvdZw/src/abstract_varinfo.jl:850 [inlined]
[28] assume
@ ~/.julia/packages/DynamicPPL/DvdZw/src/context_implementations.jl:227 [inlined]
[29] tilde_assume
@ ~/.julia/packages/DynamicPPL/DvdZw/src/context_implementations.jl:60 [inlined]
[30] tilde_assume
@ ~/.julia/packages/DynamicPPL/DvdZw/src/context_implementations.jl:57 [inlined]
[31] tilde_assume!!
@ ~/.julia/packages/DynamicPPL/DvdZw/src/context_implementations.jl:144
[32] MvDirichletWithManualAccumulation
@ ~/projects/Enzyme-mwes/MappingRF_BottomRF/mwe.jl:11
[33] _evaluate!!
@ ~/.julia/packages/DynamicPPL/DvdZw/src/model.jl:973 [inlined]
[34] evaluate_threadunsafe!!
@ ~/.julia/packages/DynamicPPL/DvdZw/src/model.jl:946 [inlined]
[35] evaluate!!
@ ~/.julia/packages/DynamicPPL/DvdZw/src/model.jl:894 [inlined]
[36] logdensity
@ ~/.julia/packages/DynamicPPL/DvdZw/src/logdensityfunction.jl:140
[37] Fix1
@ ./operators.jl:1118 [inlined]
[38] Fix1
@ ./operators.jl:0 [inlined]
[39] diffejulia_Fix1_10564_inner_2wrap
@ ./operators.jl:0
[40] macro expansion
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:7187 [inlined]
[41] enzyme_call
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:6794 [inlined]
[42] CombinedAdjointThunk
@ ~/.julia/packages/Enzyme/TiboG/src/compiler.jl:6671 [inlined]
[43] autodiff
@ ~/.julia/packages/Enzyme/TiboG/src/Enzyme.jl:320 [inlined]
[44] gradient(rm::EnzymeCore.ReverseMode{…}, f::EnzymeCore.Const{…}, x::Vector{…})
@ Enzyme ~/.julia/packages/Enzyme/TiboG/src/Enzyme.jl:1049
[45] top-level scope
@ ~/projects/Enzyme-mwes/MappingRF_BottomRF/mwe.jl:25
[46] include(fname::String)
@ Base.MainInclude ./client.jl:489
[47] top-level scope
@ REPL[3]:1
in expression starting at /Users/mhauru/projects/Enzyme-mwes/MappingRF_BottomRF/mwe.jl:1
Some type information was truncated. Use `show(err)` to see complete types.
—
Reply to this email directly, view it on GitHub
<#1812>, or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAJTUXE3IJ7GVLTUVGLTTP3ZWFY7RAVCNFSM6AAAAABOC7X44OVHI2DSMVQWIX3LMV43ASLTON2WKOZSGUZDEMBYHE3TMNY>
.
You are receiving this because you are subscribed to this thread.Message
ID: ***@***.***>
|
Somewhat simplified: using Random: randn
using Enzyme: Enzyme
using DynamicPPL: DynamicPPL
using Distributions: Dirichlet
using DistributionsAD: filldist
Enzyme.API.runtimeActivity!(true)
w = [1, 1, 1, 1]
doc = [1, 1, 2, 2]
vn = DynamicPPL.VarName{:β}()
vi_template = DynamicPPL.VarInfo()
d = filldist(Dirichlet([1.0, 1.0]), 2)
β = rand(2,2)
vi = DynamicPPL.push!!(vi_template, vn, β, d, Set{DynamicPPL.Selector}())
function f(x)
vi = DynamicPPL.unflatten(vi_template, x)
ctx = DynamicPPL.DefaultContext()
β, vi = DynamicPPL.tilde_assume!!(
ctx, filldist(Dirichlet([1.0, 1.0]), 2), vn, vi
)
log_product = log.(β)
vi = DynamicPPL.acclogp!!(ctx, vi, sum(log_product[CartesianIndex.(w, doc)]))
return DynamicPPL.getlogp(vi)
end
x = randn(4)
Enzyme.gradient(Enzyme.Reverse, Enzyme.Const(f), x) |
Hm sorry, but could you give it a bit more minimization still? |
actually wait, nevermind |
Can do more if it helps, the above is just what I got to yesterday before calling it a day. |
With the DynamicPPL release out, closing this |
Sorry @wsmoses, I don't understand. This still fails with the same error on the latest DynamicPPL and Enzyme main. Reopen? Above MWE with the new way of setting runtime activity: using Random: randn
using Enzyme: Enzyme
using DynamicPPL: DynamicPPL
using Distributions: Dirichlet
using DistributionsAD: filldist
w = [1, 1, 1, 1]
doc = [1, 1, 2, 2]
vn = DynamicPPL.VarName{:β}()
vi_template = DynamicPPL.VarInfo()
d = filldist(Dirichlet([1.0, 1.0]), 2)
β = rand(2,2)
vi = DynamicPPL.push!!(vi_template, vn, β, d, Set{DynamicPPL.Selector}())
function f(x)
vi = DynamicPPL.unflatten(vi_template, x)
ctx = DynamicPPL.DefaultContext()
β, vi = DynamicPPL.tilde_assume!!(
ctx, filldist(Dirichlet([1.0, 1.0]), 2), vn, vi
)
log_product = log.(β)
vi = DynamicPPL.acclogp!!(ctx, vi, sum(log_product[CartesianIndex.(w, doc)]))
return DynamicPPL.getlogp(vi)
end
x = randn(4)
Enzyme.gradient(Enzyme.set_runtime_activity(Enzyme.Reverse), Enzyme.Const(f), x) |
oh sorry misremembered this one and the other one |
and yeah okay sadly this needs further reduction as well |
Reduced: module MWE
using Enzyme: Enzyme
using Distributions: Distributions
Enzyme.API.runtimeActivity!(true)
function f(x)
d = Distributions.Dirichlet([1.0, 1.0])
v = eachrow(x)
return sum(Base.Fix1(Distributions.logpdf, d), v)
end
x = reshape([0.8, 0.3, 0.2, 0.7], (2, 2))
@show f(x)
Enzyme.gradient(Enzyme.Reverse, f, x)
end |
I think we’re going to need it even further reduced here.
Also I don’t think you’re on the latest Enzyme since you’re using an APi
call which was removed
…On Fri, Oct 4, 2024 at 5:01 AM Markus Hauru ***@***.***> wrote:
Reduced:
module MWE
using Enzyme: Enzymeusing Distributions: Distributions
Enzyme.API.runtimeActivity!(true)
function f(x)
d = Distributions.Dirichlet([1.0, 1.0])
v = eachrow(x)
return sum(Base.Fix1(Distributions.logpdf, d), v)end
x = reshape([0.8, 0.3, 0.2, 0.7], (2, ***@***.*** f(x)
Enzyme.gradient(Enzyme.Reverse, f, x)
end
—
Reply to this email directly, view it on GitHub
<#1812 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAJTUXHGAACCKH64XUDDXMLZZZRQHAVCNFSM6AAAAABOC7X44OVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDGOJTGMZTCMBVHE>
.
You are receiving this because you modified the open/close state.Message
ID: ***@***.***>
|
Same error on Enzyme v0.13.7 (once you remove the runtimeActivity! setting). I gotta go attend to other things, feel free to minimise further if you have time. |
@penelopeysm if you have time, would you be able to reduce this one as well? |
MWE:
Output:
The text was updated successfully, but these errors were encountered: