-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtestCNV.pl
183 lines (144 loc) · 5.73 KB
/
testCNV.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
use strict;
use warnings;
use Algorithm::ViterbiC;
use Data::Dumper;
use Math::Trig;
## Probability density function for a normal distribution with a given mean and standard deviation
sub pdf_normal {
my ($x, $mean, $sd) = @_;
return exp( (-($x-$mean)**2) / (2*$sd**2) ) / ($sd * sqrt(2*pi));
}
## TODO
## 1. read PBF file, make position => PBF hash
## 2. assign PBF to every observation
my $pfb;
print "Reading PFB file ... ";
open FILE, "scotland-PFB.txt" or die $!;
my @lines = <FILE>;
close FILE;
foreach my $line (@lines) {
chop $line;
my @bits = split(/\t/, $line);
$pfb->{$bits[0]} = $bits[3];
}
print "done\n";
undef @lines;
print "Reading observations file ... ";
open FILE, "FR-1.txt" or die $!;
my @lines = <FILE>;
close FILE;
my @headers = split(/\t/, substr(shift @lines, 0, -1));
my @observations;
for my $line (@lines) {
chop $line;
my $i = 0;
my %hash = map { $headers[$i++] => $_ } split(/\t/, $line);
push @observations, \%hash
if scalar(keys %hash) == scalar(@headers) && $hash{Position} && $hash{LRR} =~ /\d+/ && $hash{BAF} =~ /\d+/;
if ($hash{SNPName}) {
if (defined $pfb->{$hash{SNPName}}) {
$hash{pfb} = $pfb->{$hash{SNPName}};
} else {
$hash{pfb} = 0.5;
warn "No PFB for $hash{SNPName}, setting as 0.5";
}
}
}
@observations = sort { $a->{Position} <=> $b->{Position} } @observations;
print "done\n";
my $E = [
## Two copies deletion
{
LRR => sub{ pdf_normal($_[0], -3.527211, 1.329152) },
BAF => sub{ pdf_normal($_[0], 0.5, 0.304243) },
},
## One copy deletion
{
LRR => sub{ pdf_normal($_[0], -0.664184, 0.284338) },
BAF => sub{ (1 - $_[1]->{pfb}) * pdf_normal($_[0], 0, 0.016372)
+ $_[1]->{pfb} * pdf_normal($_[0], 1, 0.016372) },
},
## Normal (2 copies)
{
LRR => sub{ pdf_normal($_[0], 0, 0.159645) },
BAF => sub{ ((1-$_[1]->{pfb})**2) * pdf_normal($_[0], 0, 0.016372)
+ 2 * (1-$_[1]->{pfb}) * $_[1]->{pfb} * pdf_normal($_[0], 0.5, 0.034982)
+ ($_[1]->{pfb}**2) * pdf_normal($_[0], 1, 0.016372) },
},
## Copy-neutral LOH
{
LRR => sub{ pdf_normal($_[0], 0, 0.211396) },
BAF => sub{ (1 - $_[1]->{pfb}) * pdf_normal($_[0], 0, 0.016372)
+ $_[1]->{pfb} * pdf_normal($_[0], 1, 0.016372) },
},
## Single copy duplication
{
LRR => sub{ pdf_normal($_[0], 0.395621, 0.209089) },
BAF => sub{ ((1 - $_[1]->{pfb})**3) * pdf_normal($_[0], 0, 0.016372)
+ 3 * ((1 - $_[1]->{pfb})**2) * $_[1]->{pfb} * pdf_normal($_[0], 0.333333, 0.045126)
+ 3 * (1-$_[1]->{pfb}) * ($_[1]->{pfb}**2) * pdf_normal($_[0], 1-0.333333, 0.045126)
+ ($_[1]->{pfb}**3) * pdf_normal($_[0], 1, 0.016372) },
},
## Double copy duplication
{
LRR => sub{ pdf_normal($_[0], 0.678345, 0.191579) },
BAF => sub{ ((1 - $_[1]->{pfb})**4) * pdf_normal($_[0], 0, 0.016372)
+ 4 * ((1 - $_[1]->{pfb})**3) * $_[1]->{pfb} * pdf_normal($_[0], 0.250000, 0.042099)
+ 6 * ((1-$_[1]->{pfb})**2) * ($_[1]->{pfb}**2) * pdf_normal($_[0], 0.5, 0.034982)
+ 4 * (1-$_[1]->{pfb}) * ($_[1]->{pfb}**3) * pdf_normal($_[0], 1-0.250000, 0.042099)
+ ($_[1]->{pfb}**4) * pdf_normal($_[0], 1, 0.016372) },
},
];
my $TM = [
[ 0.905850086, 0.000000001, 0.048770575, 0.045379330, 0.000000010, 0.000000003 ],
[ 0.000000001, 0.950479016, 0.048770575, 0.000750402, 0.000000007, 0.000000003 ],
[ 0.000001064, 0.000024530, 0.998795591, 0.001165429, 0.000012479, 0.000000912 ],
[ 0.000049998, 0.000049998, 0.000049998, 0.999793826, 0.000049998, 0.000006187 ],
[ 0.000000001, 0.000000001, 0.048770575, 0.001248044, 0.949981383, 0.000000001 ],
[ 0.000000001, 0.000000001, 0.017682158, 0.000000001, 0.000297693, 0.982020152 ],
];
my $T = sub {
my ($state1, $state2, $observation1, $observation2) = @_;
my $dist = $observation2->{Position} - $observation1->{Position};
my $TMadj;
for (my $i = 0; $i < scalar(@$TM); $i++) {
my $offdiagonal_sum = 0;
for (my $j = 0; $j < scalar(@$TM); $j++) {
if ($i != $j) {
if ($i == 3) {
$TMadj->[$i][$j] = $TM->[$i][$j] * (1-exp(-$dist/100)) / (1-exp(-5000/100));
} else {
$TMadj->[$i][$j] = $TM->[$i][$j] * (1-exp(-$dist/100000)) / (1-exp(-5000/100000));
}
if ($TMadj->[$i][$j] > 1) {
warn "WARNING: Off-diagonal cell TM[$i][$j] (". $TM->[$i][$j] ." to ". $TMadj->[$i][$j] ." by $dist) in transition matrix is over boundary of 1 (HMM model is not optimized). Assign 0.999 as the value instead.\n";
$TMadj->[$i][$j] = 0.999; ## maximum possible off-diagonal value
}
$offdiagonal_sum += $TMadj->[$i][$j];
}
}
if ($offdiagonal_sum >= 1) {
for (my $j = 0; $j < scalar(@$TM); $j++) {
next if $i == $j;
##die "TMadj[$i][$j] isn't defined" unless defined $TMadj->[$i][$j];
$TMadj->[$i][$j] /= ($offdiagonal_sum/0.999);
}
$offdiagonal_sum = 0.999;
}
$TMadj->[$i][$i] = 1 - $offdiagonal_sum;
}
return $TMadj->[$state1][$state2];
};
my $START = [ 1e-9, 0.000500, 0.999000, 1e-9, 0.000500, 1e-9 ];
my $v = Algorithm::ViterbiC->new(
start => $START,
emission => $E,
transition => $T,
);
my ($v_path, $v_prob) = $v->forward_viterbi(\@observations);
for (my $i = 0; $i < scalar(@observations); $i++) {
$observations[$i]->{state} = $v_path->[$i];
}
open FILE, ">out.txt" or die $!;
print FILE $_->{state} ."\t". $_->{BAF} ."\t". $_->{LRR} ."\t". $_->{Position}. "\n" for @observations;
close FILE;