Skip to content
This repository was archived by the owner on Aug 9, 2023. It is now read-only.

Commit c329214

Browse files
changed backdoor attacks, changed thesis
1 parent 48e9ce9 commit c329214

12 files changed

+274
-60
lines changed
50.8 KB
Binary file not shown.
17.7 KB
Loading
17.7 KB
Loading

masterthesis_tex/references.bib

+65
Original file line numberDiff line numberDiff line change
@@ -1076,3 +1076,68 @@ @inproceedings{DBLP:conf/nips/RenHGS15
10761076
biburl = {https://dblp.org/rec/conf/nips/RenHGS15.bib},
10771077
bibsource = {dblp computer science bibliography, https://dblp.org}
10781078
}
1079+
1080+
@inproceedings{Krizhevsky2009LearningML,
1081+
title={Learning Multiple Layers of Features from Tiny Images},
1082+
author={Alex Krizhevsky},
1083+
year={2009}
1084+
}
1085+
1086+
@article{DBLP:journals/corr/ArjovskyCB17,
1087+
author = {Mart{\'{\i}}n Arjovsky and
1088+
Soumith Chintala and
1089+
L{\'{e}}on Bottou},
1090+
title = {Wasserstein {GAN}},
1091+
journal = {CoRR},
1092+
volume = {abs/1701.07875},
1093+
year = {2017},
1094+
url = {http://arxiv.org/abs/1701.07875},
1095+
eprinttype = {arXiv},
1096+
eprint = {1701.07875},
1097+
timestamp = {Mon, 13 Aug 2018 16:48:27 +0200},
1098+
biburl = {https://dblp.org/rec/journals/corr/ArjovskyCB17.bib},
1099+
bibsource = {dblp computer science bibliography, https://dblp.org}
1100+
}
1101+
1102+
@inproceedings{DBLP:conf/nips/GulrajaniAADC17,
1103+
author = {Ishaan Gulrajani and
1104+
Faruk Ahmed and
1105+
Mart{\'{\i}}n Arjovsky and
1106+
Vincent Dumoulin and
1107+
Aaron C. Courville},
1108+
editor = {Isabelle Guyon and
1109+
Ulrike von Luxburg and
1110+
Samy Bengio and
1111+
Hanna M. Wallach and
1112+
Rob Fergus and
1113+
S. V. N. Vishwanathan and
1114+
Roman Garnett},
1115+
title = {Improved Training of Wasserstein GANs},
1116+
booktitle = {Advances in Neural Information Processing Systems 30: Annual Conference
1117+
on Neural Information Processing Systems 2017, December 4-9, 2017,
1118+
Long Beach, CA, {USA}},
1119+
pages = {5767--5777},
1120+
year = {2017},
1121+
url = {https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html},
1122+
timestamp = {Thu, 21 Jan 2021 15:15:21 +0100},
1123+
biburl = {https://dblp.org/rec/conf/nips/GulrajaniAADC17.bib},
1124+
bibsource = {dblp computer science bibliography, https://dblp.org}
1125+
}
1126+
1127+
@article{DBLP:journals/corr/GulrajaniAADC17,
1128+
author = {Ishaan Gulrajani and
1129+
Faruk Ahmed and
1130+
Mart{\'{\i}}n Arjovsky and
1131+
Vincent Dumoulin and
1132+
Aaron C. Courville},
1133+
title = {Improved Training of Wasserstein GANs},
1134+
journal = {CoRR},
1135+
volume = {abs/1704.00028},
1136+
year = {2017},
1137+
url = {http://arxiv.org/abs/1704.00028},
1138+
eprinttype = {arXiv},
1139+
eprint = {1704.00028},
1140+
timestamp = {Mon, 13 Aug 2018 16:47:43 +0200},
1141+
biburl = {https://dblp.org/rec/journals/corr/GulrajaniAADC17.bib},
1142+
bibsource = {dblp computer science bibliography, https://dblp.org}
1143+
}

masterthesis_tex/sections/case_study_functions.tex

+15-7
Original file line numberDiff line numberDiff line change
@@ -3,36 +3,44 @@ \section{Case Study functions}
33
\label{sec:case_study_functions}
44

55
\textbf{class\_num}
6-
This argument \\ \\
6+
This argument gets the key value from the labels which is an integer. \\ \\
77
\textbf{train\_number}
8-
This argument \\ \\
8+
This argument gets the number of images from a labeled folder. \\ \\
99
\textbf{train\_path}
10-
This argument \\ \\
10+
This argument gets the path where the local training data is stored. \\ \\
1111
\textbf{data\_dir}
12-
This argument \\ \\
12+
This argument gets the path where all local images are stored. \\ \\
1313
\textbf{image\_data}
14-
This argument \\ \\
14+
This argument gets an array with all images from a label. \\ \\
1515
\textbf{image\_labels}
16-
This argument \\ \\
16+
This argument gets the label which belongs to the corresponding images. \\ \\
1717

1818
\begin{lstlisting}
1919
dataset_visualization(class_num, train_number)
2020
\end{lstlisting}
2121

22-
\noindent In this function the number of images are visualized and sorted from the lowest to the highest number of images per label.
22+
\noindent With this function, the number of images are visualized and sorted from the lowest to the highest number of images per label.
2323

2424
\begin{lstlisting}
2525
read_training_data(train_path, data_dir)
2626
\end{lstlisting}
2727

28+
\noindent This function reads in the training data, calls the \textit{dataset\_visualization()} function and resize the images to $30x30$ pixels. The function is called by the \textit{preprocessing()} function.
29+
2830
\begin{lstlisting}
2931
preprocessing(train_path, data_dir, image_data, image_labels)
3032
\end{lstlisting}
3133

34+
\noindent After calling the \textit{read\_training\_data()} function, this function assign the \textbf{image\_date} and \textbf{image\_labels} arguments to shuffle the training data. Then the training data splits into training and validation data. The shape of the images must be reshaped for the SVM.
35+
3236
\begin{lstlisting}
3337
model_training(train_path, data_dir, image_data, image_labels)
3438
\end{lstlisting}
3539

40+
\noindent After calling the \textit{preprocessing()} function, this function calls a pipeline function with the \textit{SVC()} class and then fits the classifier.
41+
3642
\begin{lstlisting}
3743
read_test_data(train_path, data_dir, image_data, image_labels)
3844
\end{lstlisting}
45+
46+
\noindent After calling the \textit{model\_training()} function, this function reads in the test data, resizes the images to $30x30$ pixels and then reshape the images. The last step is the prediction with the test data.

0 commit comments

Comments
 (0)