-
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathsaveload.jl
349 lines (291 loc) · 11.1 KB
/
saveload.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import ONNX: graphproto, modelproto, encode
import ONNX: NodeProto, ValueInfoProto, AttributeProto, onnx_name
@testset "Save and Load" begin
@testset "Multioutput" begin
args = rand(3, 4), rand(3, 4)
tape = Tape(ONNXCtx())
inp = [push!(tape, Input(arg)) for arg in args]
out1 = push_call!(tape, ONNX.add, inp...)
out2 = push_call!(tape, ONNX.mul, inp...)
res = push_call!(tape, tuple, out1, out2)
tape.result = res
ort_test(tape, args...)
end
@testset "And" begin
# Testing matricies of similar shape
args = rand(Bool, 3, 4), rand(Bool, 3, 4)
ort_test(ONNX.and, args...)
# Testing Numpy-style broadcasting
args = rand(Bool, 3, 3), rand(Bool, 1, 3)
ort_test(ONNX.and, args...)
end
@testset "Basic ops" begin
args = (rand(3, 4), rand(3, 4))
ort_test(ONNX.add, args...)
ort_test(ONNX.mul, args...)
end
@testset "Sin" begin
A = rand(3, 4)
ort_test(ONNX._sin, A)
end
@testset "Cos" begin
# ONNXRunTime has no implementation for Cos(x::Float64), using Float32
A = rand(Float32, 3, 4)
ort_test(ONNX._cos, A)
end
@testset "Abs" begin
A = rand(3, 4)
ort_test(ONNX._abs, A)
end
@testset "Acos" begin
# ONNXRunTime has no implementation for Acos(x::Float64), using Float32
A = rand(Float32, 3, 4)
ort_test(ONNX._acos, A)
end
@testset "Acosh" begin
# ONNXRunTime has no implementation for Acosh(x::Float64), using Float32
A = rand(Float32, 3, 4)
# Acosh defined for A >= 1
A = A .+ 1
ort_test(ONNX._acosh, A)
end
@testset "Asin" begin
# ONNXRunTime has no implementation for Asin(x::Float64), using Float32
A = rand(Float32, 3, 4)
# Asin defined for |A| <= 1
A = A .% 1
ort_test(ONNX._asin, A)
end
@testset "Asinh" begin
# ONNXRunTime has no implementation for Asinh(x::Float64), using Float32
A = rand(Float32, 3, 4)
ort_test(ONNX._asinh, A)
end
@testset "Transpose" begin
# ort_test() checks for expected output of functions, errors on Transpose
# because of array shape; manually testing!
# Testing 2 dimension transpose
args = (rand(1, 2),)
size1 = size(first(args))
tape = Tape(ONNXCtx())
inp = [push!(tape, Input(arg)) for arg in args]
res = push_call!(tape, ONNX._transpose, inp...)
tape.result = res
size2 = size(play!(tape, first(args)))
@test size2 == (2, 1)
# Testing 3+ dimension transpose
args = (rand(3, 4, 5),)
kwargs = (perm = (1, 2, 0),)
size1 = size(first(args))
tape = Tape(ONNXCtx())
inp = [push!(tape, Input(arg)) for arg in args]
res = push_call!(tape, ONNX._transpose, inp...; kwargs...)
tape.result = res
size2 = size(play!(tape, first(args)))
@test size2 == (4, 5, 3)
end
@testset "Pow" begin
A = rand(3, 4)
B = rand(1)
ort_test(ONNX._pow, A, B)
end
@testset "Expand" begin
# ort_test() checks for expected output of functions, errors on Expand
# because of array shape; manually testing!
# Testing expansion of shape in Expand
args = (rand(1, 20), (5, 20))
tape = Tape(ONNXCtx())
inp = [push!(tape, Input(arg)) for arg in args]
res = push_call!(tape, ONNX.expand, inp...)
tape.result = res
@test size(play!(tape, args...)) == (5, 20)
# Testing shape smaller than input in Expand
args = (rand(5, 20), (1, 20))
tape = Tape(ONNXCtx())
inp = [push!(tape, Input(arg)) for arg in args]
res = push_call!(tape, ONNX.expand, inp...)
tape.result = res
@test size(play!(tape, args...)) == (5, 20)
end
@testset "Where" begin
condition = rand(Bool, (1,20))
A = rand(1,20)
B = rand(1,20)
ort_test(ONNX._where, condition, A, B)
end
@testset "Equal" begin
A = rand(Bool, (1, 20))
B = rand(Bool, (1, 20))
ort_test(ONNX._equal, A, B)
end
@testset "Neg" begin
A = rand(3, 4)
ort_test(ONNX.neg, A)
end
@testset "ConstantOfShape" begin
# ort_test() checks for expected output of functions, errors on ConstantOfShape
# because of array shape; manually testing!
# Testing expansion of shape in ConstantOfShape
args = [2, 3]
attrs = randn(Float32, 1)
tape = Tape(ONNXCtx())
inp = push!(tape, Input(args))
res = push_call!(tape, ONNX.makeshape, inp; value = attrs)
tape.result = res
# Make sure size is desired shape
@test size(play!(tape, args)) == (2, 3)
# Make sure elements are of the desired datatype
@test eltype(attrs) == eltype(play!(tape, args))
# Make sure the output is filled with the correct value
@test attrs[1] == play!(tape, args)[1]
end
@testset "Gemm" begin
A, B, C = (rand(3, 4), rand(3, 4), rand(3, 3))
ort_test(ONNX.onnx_gemm, A, B')
ort_test(ONNX.onnx_gemm, A', B)
ort_test(ONNX.onnx_gemm, A', B, C)
ort_test(ONNX.onnx_gemm, A, B, C; tA=1)
ort_test(ONNX.onnx_gemm, A, B; tB=1)
ort_test(ONNX.onnx_gemm, A', B; α=2.0)
ort_test(ONNX.onnx_gemm, A', B, C; α=2.0, β=0.5)
# make sure Gemm with just 2 matrices and no keyword arguments
# is recorded as just *
before, after = ort_test(*, A', B)
@test before[V(3)].fn == after[V(3)].fn
@test before[V(3)].fn == *
end
@testset "MatMul" begin
ort_test(NNlib.batched_mul, rand(3, 4, 5), rand(4, 3))
ort_test(NNlib.batched_mul, rand(3, 4), rand(4, 3, 5))
ort_test(NNlib.batched_mul, rand(3, 4, 5), rand(4, 3, 5))
# 2D*2D case; since it's already covered by Gemm, we have to
# manually construct the graph
g = graphproto("generated_model")
a = Input(rand(3, 4)); a.id = 1
push!(g.input, ValueInfoProto(a))
b = Input(rand(4, 5)); b.id = 2
push!(g.input, ValueInfoProto(b))
c = mkcall(*, V(a), V(b)); c.id = 3
nd = NodeProto(
input=[onnx_name(b), onnx_name(a)],
output=[onnx_name(c)],
name=onnx_name(c),
attribute=AttributeProto[],
op_type="MatMul"
)
push!(g.node, nd)
push!(g.output, ValueInfoProto(c))
m = modelproto(g);
mktemp() do path, io
encode(ProtoEncoder(io), m)
seek(io, 0)
r2_onnx = ort_run(path, from_nnlib(a.val), from_nnlib(b.val))
r2 = from_onnx(first(values(r2_onnx)))
@test c.val ≈ r2
@test c.val ≈ load(path, a.val, b.val)[V(3)].val
end
end
@testset "Conv" begin
# 2D, keywords
args = (rand(Float32, 32, 32, 3, 1), rand(Float32, 3, 3, 3, 6))
ort_test(ONNX.conv, args...)
ort_test(ONNX.conv, args...; pad=1, stride=(1, 1), dilation=(1, 1), groups=1)
ort_test(ONNX.conv, args...; pad=1, stride=(1, 2), dilation=(2, 1), groups=1)
ort_test(ONNX.conv, args...; pad=(3, 3, 3, 3), groups=1, stride=(2, 2), dilation=(1, 1))
ort_test(ONNX.conv, args...; stride=1, dilation=1)
ort_test(ONNX.conv, args...; pad=(1, 2))
ort_test(ONNX.conv, args...; pad=(1, 2, 3, 4))
# 2D, with bias
ort_test(ONNX.conv, args..., rand(Float32, 6))
ort_test(ONNX.conv, args..., rand(Float32, 6); pad=(1, 1))
# 2D, non-square kernel
args = (rand(Float32, 32, 32, 3, 1), rand(Float32, 5, 3, 3, 6))
ort_test(ONNX.conv, args...)
# 1D
args = (rand(Float32, 32, 3, 1), rand(Float32, 3, 3, 6))
ort_test(ONNX.conv, args...)
ort_test(ONNX.conv, args...; pad=(1, 2))
# 3D
args = (rand(Float32, 32, 32, 32, 3, 1), rand(Float32, 3, 3, 3, 3, 6))
ort_test(ONNX.conv, args...)
ort_test(ONNX.conv, args...; pad=(1, 2, 3))
end
@testset "Pooling" begin
x = rand(Float32, 32, 32, 3, 1)
k = (2, 2)
ort_test(ONNX.maxpool, x; kernel=k)
ort_test(ONNX.maxpool, x; kernel=k, stride=(3, 3))
ort_test(ONNX.maxpool, x; kernel=k, stride=(3, 3), pad=1)
ort_test(ONNX.global_average_pool, x)
end
@testset "Flatten" begin
x = rand(Float32, 32, 32, 3, 1)
ort_test(ONNX.onnx_flatten, x)
end
@testset "Activations" begin
x = rand(3, 4)
ort_test(ONNX.relu, x)
# ort_test(ONNX.elu, x) # TODO: Elu is not implemented in ONNXRuntime.jl
ort_test(ONNX.tanh, x)
end
@testset "Normalization" begin
x = rand(7, 7, 3, 5); γ = rand(3); β = rand(3); μ = rand(3); σ² = rand(3)
ort_test(ONNX.batch_norm, x, γ, β, μ, σ²)
ort_test(ONNX.batch_norm, x, γ, β, μ, σ²; ϵ=1e-4)
x = rand(7, 7, 3, 5); γ = rand(3); β = rand(3); μ = rand(3); σ² = rand(3)
args = (x, γ, β, μ, σ²); model_args = args
tape = Tape(ONNXCtx())
inp = [push!(tape, Input(a)) for a in args]
bn = push_call!(tape, ONNX.batch_norm, inp...; training=true)
y = push_call!(tape, getfield, bn, 1)
mu = push_call!(tape, getfield, bn, 2)
s2 = push_call!(tape, getfield, bn, 3)
tape.result = bn
ort_test(tape, args...; atol=1e-4)
end
@testset "Shape" begin
# TODO
end
@testset "Gather" begin
data = [1.0 2.3 4.5;
1.2 3.4 5.7]
idxs = [1 2 1;
2 3 3] .- 1
ort_test(ONNX.onnx_gather, data, idxs)
idxs = [1 1 2;
1 2 2] .- 1
ort_test(ONNX.onnx_gather, data, idxs; dim=1)
idxs = [1, 2, 1] .- 1
ort_test(ONNX.onnx_gather, data, idxs)
data = [3, 4] # e.g. size of array
idxs = [2] .- 1
ort_test(ONNX.onnx_gather, data, idxs)
end
@testset "Unsqueeze" begin
ort_test(ONNX.onnx_unsqueeze, rand(2, 3, 4), [0, 4])
ort_test(ONNX.onnx_unsqueeze, rand(2, 3, 4), [0, 3])
ort_test(ONNX.onnx_unsqueeze, [4.0], [0])
end
@testset "Slice" begin
ort_test(ONNX.onnx_slice, rand(5, 10, 20), [0, 0], [3, 10], [0, 1], [1, 1])
ort_test(ONNX.onnx_slice, rand(5, 10, 20), [0, 0, 0], [3, 10, 5])
ort_test(ONNX.onnx_slice, rand(5, 10, 20), [3, 0], [0, 10], [0, 1], [1, -1])
end
@testset "Concat" begin
ort_test(ONNX.onnx_concat, [1, 2, 3], [4, 5, 6]; axis=0)
ort_test(ONNX.onnx_concat, [1, 2, 3], [4, 5, 6]; axis=-1)
ort_test(ONNX.onnx_concat, [1 2 3; 1 2 3], [4 5; 4 5]; axis=0)
end
@testset "Split" begin
x = rand(3, 20, 10); split = [5, 10, 5];
args = (x, split)
tape = Tape(ONNXCtx())
inp = [push!(tape, Input(a)) for a in args]
out = push_call!(tape, ONNX.onnx_split, inp...; axis=1)
push_call!(tape, getfield, out, 1)
push_call!(tape, getfield, out, 2)
push_call!(tape, getfield, out, 3)
tape.result = out
ort_test(tape, args...)
end
end