-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_Basic_raw_code.R
274 lines (229 loc) · 10.4 KB
/
01_Basic_raw_code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#===============================================================================
# STEP 1: Data & settings
#-------------------------------------------------------------------------------
# Required packages: lavaan, psych
Data <- lavaan::HolzingerSwineford1939
#===============================================================================
# STEP 2: ZIS - Sample
#-------------------------------------------------------------------------------
# Describe the characteristic features of the sample(s) (e.g., gender, age,
# educational achievement, mother language, socioeconomic status, geographic region).
# Descriptive statistics for nominal sample characteristics
# Define nominal variables
nominal_variables <- c("sex", "school", "grade")
# Estimation for a single variable
table(Data$sex,
useNA = "always")
# Estimate descriptive statistics
nominal_sample_statistics <- list()
for (variable in nominal_variables) {
frequency_table <- table(Data[, variable],
useNA = "always")
nominal_sample_statistics[[variable]] <- frequency_table
}
nominal_sample_statistics
# Descriptive statistics for metric sample characteristics
# Compute aggregated age variable of year and months
Data$age <- (Data$ageyr * 12 + Data$agemo) / 12
# Estimate mean, sd, skew, kurtosis, and percentage missing
mean(Data$age, na.rm = TRUE)
sd(Data$age, na.rm = TRUE)
psych::skew(Data$age, na.rm = TRUE)
psych::kurtosi(Data$age, na.rm = TRUE)
sum(is.na(Data$age)) / nrow(Data)
#===============================================================================
# STEP 3: ZIS - Item analyses: Dimensionality
#-------------------------------------------------------------------------------
# Build lookup table for required items
lookup_table <- data.frame(item = paste("x", c(1:9), sep = ""),
subscale = c(rep(c("visual", "textual", "speed"),
each = 3))
)
#===============================================================================
# STEP 3.1: Exploratory factor analyses
#-------------------------------------------------------------------------------
# Method to explore dimensionality: efa
# extraction method: minimal residuals (minres, also known as ordinary least square)
# rotation method: oblimin (oblique rotation)
# Conduct parallel analysis display screeplot
parallel_analyses_efa <- psych::fa.parallel(Data[ , unlist(lookup_table$item)],
fa = "fa",
fm = "minres", nfactors = 1, SMC = F,
n.iter = 20, # quant = .95,
cor = "cor")
# Display eigen values
parallel_analyses_efa$fa.values
# Estimate exploratory factor analyses
efa <- psych::fa(Data[ , unlist(lookup_table$item)],
fm = "pa",
nfactors = 3,
rotate = "oblimin",
scores = "regression", oblique.scores = F,
SMC = TRUE,
cor = "cor")
efa
# matrix of factor loadings
round(efa[["loadings"]], digits = 2)
# factor intercorrelation
round(efa[["Phi"]], digits = 2)
# item communalities
round(efa[["communality"]], digits = 2)
# eigen values
round(efa[["values"]], digits = 2) # or e.values?
#===============================================================================
# STEP 3.2: Confirmatory factor analyses (CFA)
#-------------------------------------------------------------------------------
# Method to explore dimensionality: cfa
# Model estimator: MLR
# Handling of missing data: no missing data
# model specifications: Compare 'Define models'
# model fit indices: Compare 'Fit evaluation'
# Define models
one_fator_model <- '
g_factor =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
'
three_fator_model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
'
three_factor_tau_model <- '
visual =~ a*x1 + a*x2 + a*x3
textual =~ b*x4 + b*x5 + b*x6
speed =~ c*x7 + c*x8 + c*x9
'
# Estimate cfa
# One factor model
one_factor_cfa <- lavaan::cfa(model = one_fator_model,
data = Data,
estimator = 'mlr',
std.lv = TRUE)
lavaan::summary(one_factor_cfa,
fit.measures = TRUE,
standardized = TRUE)
# Three factor model
three_factor_cfa <- lavaan::cfa(model = three_fator_model,
data = Data,
estimator = 'mlr',
std.lv = TRUE)
lavaan::summary(three_factor_cfa,
fit.measures = TRUE,
standardized = TRUE)
# Three factor model model with essential tau equivalence
three_factor_tau_cfa <- lavaan::cfa(model = three_factor_tau_model,
data = Data,
estimator = 'mlr',
std.lv = TRUE)
lavaan::summary(three_factor_tau_cfa,
fit.measures = TRUE,
standardized = TRUE)
# model fit
# Define fit measures of interest
# use robust versions
fit_measures <- c("chisq", "df", "pvalue",
"cfi.robust", "rmsea.robust", "srmr",
"aic", "bic", "bic2")
# Extract model fit
round(lavaan::fitMeasures(one_factor_cfa, fit.measures = fit_measures), digits = 3)
round(lavaan::fitMeasures(three_factor_cfa, fit.measures = fit_measures), digits = 3)
round(lavaan::fitMeasures(three_factor_tau_cfa, fit.measures = fit_measures), digits = 3)
# Evaluate local model fit
# Extract residual correlaton matrix
lavaan::lavResiduals(one_factor_cfa)$cov
lavaan::lavResiduals(three_factor_cfa)$cov
lavaan::lavResiduals(three_factor_tau_cfa)$cov
# Extract standardized factor loadings
lavaan::lavInspect(one_factor_cfa, "std")$lambda
# Extract standardized factor loadings & interfactor correlation
lavaan::lavInspect(three_factor_cfa, "std")$lambda
lavaan::lavInspect(three_factor_cfa, "std")$psi
lavaan::lavInspect(three_factor_tau_cfa, "std")$lambda
lavaan::lavInspect(three_factor_tau_cfa, "std")$psi
#===============================================================================
# STEP 4: ZIS - Item parameter
#-------------------------------------------------------------------------------
# For standardized factor loadings (i.e., selectivity) compare 3.3
# Estimate descriptive statistics
# Mean, SD, Skewness, Excess kurtosis
psych::describe(Data[ , unlist(lookup_table$item)])
#===============================================================================
# STEP 5: ZIS - Reliability
#-------------------------------------------------------------------------------
# Estimate Cronbachs alpha as example for scale "textual"
textual_alphas <- psych::alpha(Data[, lookup_table[lookup_table$subscale == "textual", "item"]],
n.iter = 1000)
# Extract point estimated of alpha
round(textual_alphas[["total"]][["raw_alpha"]], digits = 2)
# Extract confidence intervals for point estimates
round(textual_alphas[["boot.ci"]], digits = 2)
# McDonalds omega
semTools::reliability(one_factor_cfa)
semTools::reliability(three_factor_cfa)
semTools::reliability(three_factor_tau_cfa)
#===============================================================================
# STEP 6: ZIS - Validity: Criterion validity
#-------------------------------------------------------------------------------
# Build scale scores by unweighted means
for(subscale in unique(lookup_table$subscale)) {
subscale_name <- paste(subscale, "mean", sep = "_")
items <- lookup_table[lookup_table$subscale == subscale, "item"]
mean_score <- rowMeans(Data[, items], na.rm = FALSE)
Data[, subscale_name] <- mean_score
}
# Transform school variable to a numeric variable
Data$school_numeric <- as.numeric(Data$school)
# Estimate correlation with sex, age, school, and grade
# Define variables for correlational analyses
cor_variables <- c("visual_mean", "textual_mean", "speed_mean",
"sex", "age", "school_numeric", "grade")
# Estimate correlations
cor(Data[, cor_variables],
use = "pairwise.complete.obs")
#===============================================================================
# STEP 7: ZIS - Further quality criteria: Measurement invariance
#-------------------------------------------------------------------------------
# Estimate measurement invariance across sex
# Estimate multi group cfa to evaluate cofigural measurement invariance
configural_model <- lavaan::cfa(model = three_fator_model,
data = Data,
estimator = 'mlr',
group = 'sex',
std.lv = TRUE)
lavaan::summary(configural_model,
fit.measures = TRUE,
standardized = TRUE)
# Estimate multi group cfa to evaluate metric measurement invariance
metric_model <- lavaan::cfa(model = three_fator_model,
data = Data,
estimator = 'mlr',
group = 'sex',
group.equal = c("loadings"),
std.lv = TRUE)
lavaan::summary(metric_model,
fit.measures = TRUE,
standardized = TRUE)
# Estimate multi group cfa to evaluate scalar measurement invariance
scalar_model <- lavaan::cfa(model = three_fator_model,
data = Data,
estimator = 'mlr',
group = 'sex',
group.equal = c("loadings", "intercepts"),
std.lv = TRUE)
lavaan::summary(scalar_model,
fit.measures = TRUE,
standardized = TRUE)
# Extract model fit of multi-group cfa
# Define models
list_mi_cfa <- c(configural_model, metric_model, scalar_model)
# Extract model fit
fit_MI <- round(lavaan::fitMeasures(list_mi_cfa[[1]], fit.measures = fit_measures), digits = 3)
for(i in c(2:length(list_mi_cfa))) {
fit_MI <- rbind(fit_MI,
round(lavaan::fitMeasures(list_mi_cfa[[i]], fit.measures = fit_measures), digits = 3)
)
}
rownames(fit_MI) <- c("cofigural_model", "metric_model", "scaler_model")
#===============================================================================
# STEP 8: ZIS - Descriptive statistics
#-------------------------------------------------------------------------------
psych::describe(Data[, c("visual_mean", "textual_mean", "speed_mean")])