-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
549 lines (441 loc) · 20 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import ast
import torch
import json
import os
import numpy as np
import os.path as osp
import pandas as pd
import pickle as pk
from itertools import repeat
from rdkit import Chem
import torch_geometric.transforms as T
from torch_geometric.data import Data, InMemoryDataset, download_url
from torch_geometric.utils import from_networkx, degree, to_networkx
bond_type_to_int = {Chem.BondType.SINGLE: 0, Chem.BondType.DOUBLE: 1, Chem.BondType.TRIPLE: 2}
def get_data_scaler(config):
"""Data normalizer. Assume data are always in [0, 1]."""
centered = config.data.centered
if hasattr(config.data, "shift"):
shift = config.data.shift
else:
shift = 0.
if hasattr(config.data, 'norm'):
atom_norm, bond_norm = config.data.norm
assert shift == 0.
def scale_fn(x, atom=False):
if centered:
x = x * 2. - 1.
else:
x = x
if atom:
x = x * atom_norm
else:
x = x * bond_norm
return x
return scale_fn
else:
if centered:
# Rescale to [-1, 1]
return lambda x: x * 2. - 1. + shift
else:
assert shift == 0.
return lambda x: x
def get_data_inverse_scaler(config):
"""Inverse data normalizer."""
centered = config.data.centered
if hasattr(config.data, "shift"):
shift = config.data.shift
else:
shift = 0.
if hasattr(config.data, 'norm'):
atom_norm, bond_norm = config.data.norm
assert shift == 0.
def inverse_scale_fn(x, atom=False):
if atom:
x = x / atom_norm
else:
x = x / bond_norm
if centered:
x = (x + 1.) / 2.
else:
x = x
return x
return inverse_scale_fn
else:
if centered:
# Rescale [-1, 1] to [0, 1]
return lambda x: (x + 1. - shift) / 2.
else:
assert shift == 0.
return lambda x: x
def networkx_graphs(dataset):
return [to_networkx(dataset[i], to_undirected=True, remove_self_loops=True) for i in range(len(dataset))]
class StructureDataset(InMemoryDataset):
def __init__(self,
root,
dataset_name,
transform=None,
pre_transform=None,
pre_filter=None):
self.dataset_name = dataset_name
super(StructureDataset, self).__init__(root, transform, pre_transform, pre_filter)
if not os.path.exists(self.raw_paths[0]):
raise ValueError("Without raw files.")
if os.path.exists(self.processed_paths[0]):
self.data, self.slices = torch.load(self.processed_paths[0])
else:
self.process()
@property
def raw_file_names(self):
return [self.dataset_name + '.pkl']
@property
def processed_file_names(self):
return [self.dataset_name + '.pt']
@property
def num_node_features(self):
if self.data.x is None:
return 0
return self.data.x.size(1)
def __repr__(self) -> str:
arg_repr = str(len(self)) if len(self) > 1 else ''
return f'{self.dataset_name}({arg_repr})'
def process(self):
# Read data into 'Data' list
input_path = self.raw_paths[0]
with open(input_path, 'rb') as f:
graphs_nx = pk.load(f)
data_list = [from_networkx(G) for G in graphs_nx]
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
self.data, self.slices = self.collate(data_list)
torch.save((self.data, self.slices), self.processed_paths[0])
@torch.no_grad()
def max_degree(self):
data_list = [self.get(i) for i in range(len(self))]
def graph_max_degree(g_data):
return max(degree(g_data.edge_index[1], num_nodes=g_data.num_nodes))
degree_list = [graph_max_degree(data) for data in data_list]
return int(max(degree_list).item())
def n_node_pmf(self):
node_list = [self.get(i).num_nodes for i in range(len(self))]
n_node_pmf = np.bincount(node_list)
n_node_pmf = n_node_pmf / n_node_pmf.sum()
return n_node_pmf
class MolDataset(InMemoryDataset):
# from DIG: Dive into Graphs
"""
A Pytorch Geometric data interface for datasets used in molecule generation.
.. note::
Some datasets may not come with any node labels, like :obj:`moses`.
Since they don't have any properties in the original data file. The process of the
dataset can only save the current input property and will load the same property
label when the processed dataset is used. You can change the augment :obj:`processed_filename`
to re-process the dataset with intended property.
Args:
root (string, optional): Root directory where the dataset should be saved.
name (string, optional): The name of the dataset. Available dataset names are as follows:
:obj:`zinc250k`, :obj:`zinc_800_graphaf`, :obj:`zinc_800_jt`,
:obj:`zinc250k_property`, :obj:`qm9_property`, :obj:`qm9`, :obj:`moses`.
bond_ch (int): The channels for bond matrices. {1, 2, 4}
prop_name (string, optional): The molecular property desired and used as the optimization target.
(eg. "obj:`penalized_logp`)
conf_dict (dictionary, optional): dictionary that stores all the configuration for the corresponding dataset
transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data`
object and returns a transformed version. The data object will be transformed before every access.
pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data`
object and returns a transformed version.The data object will be transformed before being saved to disk.
pre_filter (callable, optional): A function that takes in an :obj:`torch_geometric.data.Data` object and
returns a boolean value, indicating whether the data object should be included in the final dataset.
"""
def __init__(self, root, name, bond_ch, prop_name='penalized_logp',
conf_dict=None, transform=None, pre_transform=None,
pre_filter=None, processed_filename='data.pt'):
self.processed_filename = processed_filename
self.root = root
self.name = name
self.prop_name = prop_name
self.bond_ch = bond_ch
if conf_dict is None:
config_file = pd.read_csv(os.path.join(os.path.dirname(__file__), 'mol_config.csv'), index_col=0)
if self.name not in config_file:
error_mssg = 'Invalid dataset name {}.\n'.format(self.name)
error_mssg += 'Available datasets are as follows:\n'
error_mssg += '\n'.join(config_file.keys())
raise ValueError(error_mssg)
config = config_file[self.name]
else:
config = conf_dict
self.url = config['url']
self.available_prop = str(prop_name) in ast.literal_eval(config['prop_list'])
self.smile_col = config['smile']
self.num_max_node = int(config['num_max_node'])
self.atom_list = ast.literal_eval(config['atom_list'])
super(MolDataset, self).__init__(root, transform, pre_transform, pre_filter)
if not osp.exists(self.raw_paths[0]):
self.download()
if osp.exists(self.processed_paths[0]):
self.data, self.slices, self.all_smiles = torch.load(self.processed_paths[0])
else:
self.process()
@property
def raw_dir(self):
name = 'raw'
return osp.join(self.root, name)
@property
def processed_dir(self):
name = 'processed'
return osp.join(self.root, self.name, name)
@property
def raw_file_names(self):
name = self.name + '.csv'
return name
@property
def processed_file_names(self):
return self.processed_filename
def download(self):
print('making raw files:', self.raw_dir)
if not osp.exists(self.raw_dir):
os.makedirs(self.raw_dir)
url = self.url
path = download_url(url, self.raw_dir)
def process(self):
"""Process the dataset from raw data file to the :obj:`self.processed_dir` folder."""
print('Processing...')
self.data, self.slices = self.pre_process()
if self.pre_filter is not None:
data_list = [self.get(idx) for idx in range(len(self))]
data_list = [data for data in data_list if self.pre_filter(data)]
self.data, self.slices = self.collate(data_list)
if self.pre_transform is not None:
data_list = [self.get(idx) for idx in range(len(self))]
data_list = [self.pre_transform(data) for data in data_list]
self.data, self.slices = self.collate(data_list)
print('making processed files:', self.processed_dir)
if not osp.exists(self.processed_dir):
os.makedirs(self.processed_dir)
torch.save((self.data, self.slices, self.all_smiles), self.processed_paths[0])
print('Done!')
def __repr__(self):
return '{}({})'.format(self.name, len(self))
def get(self, idx):
"""Get the data object at index idx. """
data = self.data.__class__()
if hasattr(self.data, '__num_nodes__'):
data.num_nodes = self.data.__num_nodes__[idx]
for key in self.data.keys:
item, slices = self.data[key], self.slices[key]
if torch.is_tensor(item):
s = list(repeat(slice(None), item.dim()))
s[self.data.__cat_dim__(key, item)] = slice(slices[idx], slices[idx + 1])
else:
s = slice(slices[idx], slices[idx + 1])
data[key] = item[s]
data['smile'] = self.all_smiles[idx]
if self.bond_ch == 1:
with torch.no_grad():
adj = data.adj
ch = adj.shape[0]
adj = torch.argmax(adj, dim=0)
adj[adj == 3] = -1
adj = (adj + 1).float()
data['adj'] = adj.unsqueeze(0) / (ch - 1)
elif self.bond_ch == 2:
with torch.no_grad():
adj = data.adj
ch = adj.shape[0]
adj = torch.argmax(adj, dim=0)
adj[adj == 3] = -1
adj_1 = ((adj + 1) != 0).float()
adj = (adj + 1).float()
adj = torch.stack([adj / (ch - 1), adj_1])
data['adj'] = adj
return data
def pre_process(self):
input_path = self.raw_paths[0]
input_df = pd.read_csv(input_path, sep=',', dtype='str')
smile_list = list(input_df[self.smile_col])
if self.available_prop:
prop_list = list(input_df[self.prop_name])
self.all_smiles = smile_list
data_list = []
for i in range(len(smile_list)):
smile = smile_list[i]
mol = Chem.MolFromSmiles(smile)
Chem.Kekulize(mol)
num_atom = mol.GetNumAtoms()
if num_atom > self.num_max_node:
continue
else:
# atoms
atom_array = np.zeros((self.num_max_node, len(self.atom_list)), dtype=np.float32)
atom_mask = np.zeros(self.num_max_node, dtype=np.float32)
atom_mask[:num_atom] = 1.
atom_idx = 0
for atom in mol.GetAtoms():
atom_feature = atom.GetAtomicNum()
atom_array[atom_idx, self.atom_list.index(atom_feature)] = 1
atom_idx += 1
x = torch.tensor(atom_array)
# bonds
adj_array = np.zeros([4, self.num_max_node, self.num_max_node], dtype=np.float32)
for bond in mol.GetBonds():
bond_type = bond.GetBondType()
ch = bond_type_to_int[bond_type]
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
adj_array[ch, i, j] = 1.
adj_array[ch, j, i] = 1.
adj_array[-1, :, :] = 1 - np.sum(adj_array, axis=0)
# adj_array += np.eye(self.num_max_node)
data = Data(x=x)
data.adj = torch.tensor(adj_array)
data.num_atom = num_atom
data.atom_mask = torch.tensor(atom_mask)
if self.available_prop:
data.y = torch.tensor([float(prop_list[i])])
data_list.append(data)
data, slices = self.collate(data_list)
return data, slices
def get_split_idx(self):
"""
Gets the train-valid set split indices of the dataset.
Return:
A dictionary for training-validation split with key `train_idx` and `valid_idx`.
"""
if self.name.find('zinc250k') != -1:
path = os.path.join(self.root, 'raw/valid_idx_zinc250k.json')
with open(path) as f:
valid_idx = json.load(f)
elif self.name.find('qm9') != -1:
path = os.path.join(self.root, 'raw/valid_idx_qm9.json')
with open(path) as f:
valid_idx = json.load(f)['valid_idxs']
valid_idx = list(map(int, valid_idx))
else:
print('No available split file for this dataset, please check.')
return None
train_idx = list(set(np.arange(self.__len__())).difference(set(valid_idx)))
return {'train_idx': torch.tensor(train_idx, dtype=torch.long),
'valid_idx': torch.tensor(valid_idx, dtype=torch.long)}
def n_node_pmf(self):
# if 'qm9' in self.name:
# n_node_pmf = [0. for _ in range(10)]
# n_node_pmf[-1] = 1.
# return np.array(n_node_pmf)
node_list = [self.get(i).num_atom.item() for i in range(len(self))]
n_node_pmf = np.bincount(node_list)
n_node_pmf = n_node_pmf / n_node_pmf.sum()
return n_node_pmf
class QM9(MolDataset):
def __init__(self, root='./', bond_ch=4, prop_name='penalized_logp', conf_dict=None, transform=None,
pre_transform=None, pre_filter=None, processed_filename='data.pt'):
name = 'qm9_property'
super(QM9, self).__init__(root, name, bond_ch, prop_name, conf_dict, transform, pre_transform, pre_filter,
processed_filename)
class ZINC250k(MolDataset):
"""
The attributes of the output data:
x: the node features.
y: the property labels for the graph.
adj: the edge features in the form of dense adjacent matrices.
batch: the assignment vector which maps each node to its respective graph identifier and can help reconstruct
single graphs.
num_atom: number of atoms for each graph.
smile: original SMILE sequences for the graphs.
"""
def __init__(self, root='./', bond_ch=4, prop_name='penalized_logp', conf_dict=None, transform=None,
pre_transform=None, pre_filter=None, processed_filename='data.pt'):
name = 'zinc250k_property'
super(ZINC250k, self).__init__(root, name, bond_ch, prop_name, conf_dict, transform, pre_transform, pre_filter,
processed_filename)
class MOSES(MolDataset):
def __init__(self, root='./', bond_ch=4, prop_name=None, conf_dict=None, transform=None, pre_transform=None, pre_filter=None,
processed_filename='data.pt'):
name = 'moses'
super(MOSES, self).__init__(root, name, bond_ch, prop_name, conf_dict, transform, pre_transform, pre_filter,
processed_filename)
class ZINC800(MolDataset):
"""
ZINC800 contains 800 selected molecules with lowest penalized logP scores. While method `jt` selects from the test
set and `graphaf` selects from the train set.
"""
def __init__(self, root='./', method='jt', bond_ch=4, prop_name='penalized_logp', conf_dict=None, transform=None,
pre_transform=None, pre_filter=None, processed_filename='data.pt'):
name = 'zinc_800'
name = name + '_' + method
super(ZINC800, self).__init__(root, name, bond_ch, prop_name, conf_dict, transform, pre_transform, pre_filter,
processed_filename)
def get_opt_dataset(config):
"""Create data loaders for similarity constrained molecule optimization.
Args:
config: A ml_collection.ConfigDict parsed from config files.
Returns:
dataset
"""
transform = T.Compose([
T.ToDevice(config.device)
])
assert 'zinc_800' in config.data.name
if 'jt' in config.data.name:
dataset = ZINC800(config.data.root, 'jt', bond_ch=config.data.bond_channels, transform=transform)
elif 'graphaf' in config.data.name:
dataset = ZINC800(config.data.root, 'graphaf', bond_ch=config.data.bond_channels, transform=transform)
else:
error_mssg = 'Invalid method type {}.\n'.format(config.data.name)
error_mssg += 'Available datasets are as follows:\n'
error_mssg += '\n'.join(['jt', 'graphaf'])
raise ValueError(error_mssg)
return dataset
def get_dataset(config):
"""Create data loaders for training and evaluation.
Args:
config: A ml_collection.ConfigDict parsed from config files.
Returns:
train_ds, eval_ds, test_ds, n_node_pmf
"""
# define data transforms
transform = T.Compose([
# T.ToDense(config.data.max_node),
T.ToDevice(config.device)
])
# Build up data iterators
if config.model_type == 'mol_sde' or config.model_type == 'sep_mol_sde':
if config.data.name == 'QM9':
dataset = QM9(config.data.root, bond_ch=config.data.bond_channels, transform=transform)
elif config.data.name == 'ZINC250K':
if hasattr(config.data, 'property'):
property = config.data.property
else:
property = 'penalized_logp'
if property == 'qed':
dataset = ZINC250k(config.data.root, prop_name=property, bond_ch=config.data.bond_channels,
transform=transform, processed_filename='qed_data.pt')
else:
dataset = ZINC250k(config.data.root, prop_name=property,
bond_ch=config.data.bond_channels, transform=transform)
elif config.data.name == 'MOSES':
dataset = MOSES(config.data.root, bond_ch=config.data.bond_channels, transform=transform)
else:
raise ValueError('Undefined dataset name.')
all_smiles = dataset.all_smiles
splits = dataset.get_split_idx()
train_idx = splits['train_idx']
test_idx = splits['valid_idx']
train_dataset = dataset[train_idx]
train_dataset.sub_smiles = [all_smiles[idx] for idx in train_idx]
test_dataset = dataset[test_idx]
test_dataset.sub_smiles = [all_smiles[idx] for idx in test_idx]
eval_idx = train_idx[torch.randperm(len(train_idx))[:len(test_idx)]]
eval_dataset = dataset[eval_idx]
eval_dataset.sub_smiles = [all_smiles[idx] for idx in eval_idx]
else:
dataset = StructureDataset(config.data.root, config.data.name, transform=transform)
num_train = int(len(dataset) * config.data.split_ratio)
num_test = len(dataset) - num_train
train_dataset = dataset[:num_train]
eval_dataset = dataset[:num_test]
test_dataset = dataset[num_train:]
n_node_pmf = train_dataset.n_node_pmf()
return train_dataset, eval_dataset, test_dataset, n_node_pmf