-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
932 lines (794 loc) · 32.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
from shiny import App, ui, render, reactive
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import pathlib
import json
import collections
from metadata import OUR_TEAM_NUMBER, CURRENT_EVENT
from utils import statbotics_utils, tba_utils
# read in data
USE_LOCAL_VERSION = True
if USE_LOCAL_VERSION:
script_directory = pathlib.Path(__file__).resolve().parent
base_data_directory = script_directory / f"data/{CURRENT_EVENT}"
print(f"Loading local data from: {base_data_directory}")
df = pd.read_csv(base_data_directory / "match_scouting.csv")
matches_df = tba_utils.load_event_matches(base_data_directory / "tba_matches.json")
statbotics_df = statbotics_utils.load_statbotics_matches(base_data_directory / "statbotics_matches.json")
else:
branch_name = "main"
base_url = f"https://raw.githubusercontent.com/GirlsOfSteelRobotics/gos_scouting_report/refs/heads/{branch_name}/data/{CURRENT_EVENT}"
print(f"Loading remote data from {base_url}")
from pyodide.http import open_url
scouted_csv = open_url(base_url + "/match_scouting.csv")
tba_matches_json = json.load(open_url(base_url + "/tba_matches.json"))
statbotics_matches_json = json.load(open_url(base_url + "/statbotics_matches.json"))
df = pd.read_csv(scouted_csv)
matches_df = tba_utils.event_matches_json_to_dataframe(tba_matches_json)
statbotics_df = statbotics_utils.statbotics_matches_json_to_dataframe(statbotics_matches_json)
# add new columns
df["totalTeleopCoral"] = df["teleopCoralL1"] + df["teleopCoralL2"] + df["teleopCoralL3"] + df["teleopCoralL4"]
df["totalAutoCoral"] = df["autoCoralL1"] + df["autoCoralL2"] + df["autoCoralL3"] + df["autoCoralL4"]
df["totalTeleopCoralPoints"] = df["teleopCoralL1"]*2 + df["teleopCoralL2"]*3 + df["teleopCoralL3"]*4 + df["teleopCoralL4"]*5
df["totalTeleopAlgaePoints"] = df["teleopAlgaeNet"]*4 + df["teleopAlgaeProc"]*6
df["totalTeleopPoints"] = df["totalTeleopCoralPoints"] + df["totalTeleopAlgaePoints"]
df["totalAutoCoralPoints"] = df["autoCoralL1"]*3 + df["autoCoralL2"]*4 + df["autoCoralL3"]*6 + df["autoCoralL4"]*7
df["totalAutoAlgaePoints"] = df["autoAlgaeNet"]*4 + df["autoAlgaeProc"]*6
df["totalAutoPoints"] = df["totalAutoCoralPoints"] + df["totalAutoAlgaePoints"]
df["algaeTeleop"] = df["teleopAlgaeNet"] + df["teleopAlgaeProc"]
df["algaeAuto"] = df["autoAlgaeNet"] + df["autoAlgaeProc"]
df["totalPieces"] = df["totalTeleopCoral"] + df["totalAutoCoral"] + df["algaeTeleop"] + df["algaeAuto"]
position = df["bargeStatus"]
df["endgamePoints"] = np.where(position == "Parked", 2, np.where(position == "Shallow Cage", 6, np.where(position == "Deep Cage", 12, 0)))
df["endgamePlusAuto"] = df["totalAutoPoints"] + df["totalEndgamePoints"]
df["totalPointsScored"] = df["totalTeleopPoints"] + df["totalAutoPoints"] + df["endgamePoints"]
# update team name
df["team_key"] = df["team_key"].str[3:]
def create_mock_data_for_missing_teams(teams_with_no_data):
data = collections.defaultdict(list)
for team in teams_with_no_data:
for key in df.columns:
data[key].append(0)
data["team_key"][-1] = team
data["bargeStatus"][-1] = "Not Parked"
return pd.DataFrame(data)
df_unique_teams = df.drop_duplicates(subset=['team_key'], keep='first')
# print(df_unique_teams.keys())
# Define the UI
app_ui = ui.page_navbar(
ui.nav_panel(
"Match Preview",
ui.page_sidebar(
ui.sidebar(
ui.input_radio_buttons("match_or_team", "Select Match Number or 6 Teams",
choices=["Match Number", "Select 6 Teams"], selected="Match Number"),
ui.output_ui("our_matches_switch_ui"),
ui.output_ui("match_list_combobox"),
),
ui.page_navbar(
ui.nav_panel(
"General Data",
ui.card(
ui.output_ui("teleop_auto_points_scatter")
),
ui.card(
ui.output_ui("total_points_boxplot")
),
ui.layout_column_wrap(
ui.card(
ui.output_ui("red_statbotics_prediction")
),
ui.card(
ui.output_ui("blue_statbotics_prediction")
)
),
ui.layout_column_wrap(
ui.card(
ui.output_ui("avg_coral_red_box")
),
ui.card(
ui.output_ui("avg_coral_blue_box")
),
),
ui.layout_column_wrap(
ui.card(
ui.output_ui("avg_endgame_red_box")
),
ui.card(
ui.output_ui("avg_endgame_blue_box")
),
),
ui.card(
ui.output_data_frame("statbotics_dataframe")
),
),
ui.nav_panel(
"Auto Data",
ui.card(
ui.output_ui("coral_algae_auto_scatter")
),
ui.card(
ui.output_ui("coral_level_distribution_auto_bar")
),
ui.card(
ui.output_ui("coral_point_distribution_auto_bar")
)
),
ui.nav_panel(
"Teleop Data",
ui.card(
ui.output_ui("coral_algae_teleop_scatter")
),
ui.card(
ui.output_ui("net_processor_teleop")
),
ui.card(
ui.output_ui("coral_level_distribution_teleop_bar")
),
ui.card(
ui.output_ui("coral_point_distribution_teleop_bar")
)
),
ui.nav_panel(
"Endgame Data",
ui.card(
ui.output_ui("endgame_bar")
)
),
),
),
),
ui.nav_panel(
"Alliance Selection",
ui.card(
ui.output_ui("statbotics_scatter")
),
ui.card(
ui.output_data_frame("key_stats_dt")
),
),
ui.nav_panel(
"Team Summary",
ui.page_sidebar(
ui.sidebar(
ui.output_ui("team_list_combobox"),
),
ui.card(
ui.output_ui("team_piece_summary_teleop")
),
ui.card(
ui.output_ui("team_piece_summary_auto")
),
ui.card(
ui.output_data_frame("key_stats_by_team_dt")
)
)
),
title="GoS REEFSCAPE Data Science Report",
)
def server(input, output, session):
# upcoming alliance lineup
def color_picker(team_num):
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
if team_num in red_teams:
return "red"
else:
return "blue"
@reactive.calc
def get_match_data():
if input.match_or_team() == "Match Number":
match_num = int(input.match_select())
match_data = matches_df[matches_df["match_number"] == match_num].reset_index()
red_teams = [match_data["red1"][0][3:], match_data["red2"][0][3:], match_data["red3"][0][3:]]
blue_teams = [match_data["blue1"][0][3:], match_data["blue2"][0][3:], match_data["blue3"][0][3:]]
else:
red_teams = [input.red1(), input.red2(), input.red3()]
blue_teams = [input.blue1(), input.blue2(), input.blue3()]
all_teams = red_teams + blue_teams
# filter df by team_key
new_df = df.loc[df["team_key"].isin(all_teams)]
teams_with_no_data = set(all_teams).difference(set(new_df["team_key"]))
if teams_with_no_data:
ui.notification_show(
f"This match contains teams that have no scouting data",
type="warning",
duration=None,
)
new_df = pd.concat([new_df, create_mock_data_for_missing_teams(teams_with_no_data)])
new_df["colorGroup"] = new_df["team_key"].apply(lambda x: "Red" if x in red_teams else "Blue")
# averages df
averages_by_team = new_df.groupby("team_key").mean(numeric_only=True).reset_index()
averages_by_team_all = df.groupby("team_key").mean(numeric_only=True).reset_index()
# Sort data
averages_by_team = averages_by_team.set_index("team_key").loc[all_teams].reset_index()
new_df = new_df.set_index("team_key").loc[all_teams].reset_index()
color_map = {str(team): "#FF5733" for team in red_teams} # Red teams
color_map.update({str(team): "#1F77B4" for team in blue_teams}) # Blue teams
return new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all
@output
@render.ui
def total_points_boxplot():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
fig = px.box(new_df,
x="team_key",
y="totalPointsScored",
color="team_key",
category_orders={"team_key": new_df["team_key"].tolist()}, # Ensure x-axis is ordered
color_discrete_map=color_map
)
# Step 6: Update x-axis labels if needed
fig.update_layout(
xaxis=dict(
title="Team",
tickmode="array",
tickvals=new_df["team_key"].tolist(),
ticktext=new_df["team_key"].tolist(),
tickfont=dict(size=14)
)
)
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def coral_algae_teleop_scatter():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
x = averages_by_team["algaeTeleop"]
y = averages_by_team["totalTeleopCoral"]
teams = averages_by_team["team_key"]
fig = px.scatter(x=x, y=y, text=teams, labels={'x': "Avg Algae Scored", 'y': "Avg Coral Scored"},
title="Algae vs Coral TELEOP")
colors = [color_picker(team) for team in teams]
fig.update_traces(marker=dict(color=colors,
symbol='circle', size=10),
textposition="middle left")
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def teleop_auto_points_scatter():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
teams = averages_by_team["team_key"]
x = averages_by_team["totalTeleopPoints"]
y = averages_by_team["totalAutoPoints"]
# Create the plot
fig = px.scatter(x=x, y=y, text=teams, labels={'x': "totalTeleopPoints", 'y': "totalAutoPoints"},
title="Teleop vs Auto Points")
# Add custom color for each point based on the team_key
colors = [color_picker(team) for team in teams] # Apply color_picker correctly
fig.update_traces(marker=dict(color=colors,
symbol='circle', size=10),
textposition="middle left")
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def net_processor_teleop():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
# Step 1: Convert team_keys to string
averages_by_team["team_key"] = averages_by_team["team_key"].astype(str)
# Step 2: Sort teams by colorGroup (if needed)
averages_by_team["colorGroup"] = averages_by_team["team_key"].apply(lambda x: "Red" if x in red_teams else "Blue")
# Step 3: Define x-axis values
x = averages_by_team["team_key"]
y1 = averages_by_team["teleopAlgaeNet"]
y2 = averages_by_team["teleopAlgaeProc"]
# Step 4: Define colors for x-axis labels
color_map = {str(team): "#FF5733" for team in red_teams} # Red teams
color_map.update({str(team): "#1F77B4" for team in blue_teams}) # Blue teams
# Generate colored tick labels
ticktext = [f'<span style="color:{color_map[team]};">{team}</span>' for team in x]
# Step 5: Create the bar chart
fig = go.Figure()
fig.add_trace(go.Bar(
x=x,
y=y1,
name="Net",
marker=dict(color="#83DCDD", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y2,
name="Processor",
marker=dict(color="#FFB480", line=dict(color="white", width=1))
))
# Step 6: Update layout with grouped colored x-axis labels
fig.update_layout(
barmode="stack",
xaxis=dict(
title="Team",
tickmode="array",
tickvals=all_teams,
ticktext=ticktext, # Apply colored labels
tickfont=dict(size=14) # Adjust font size if needed
),
yaxis_title="Avg Algae in Net / Processor",
title="Algae in Processor and Net TELEOP",
legend_title="Algae Type",
template="plotly_white"
)
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def coral_algae_auto_scatter():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
x = averages_by_team["algaeAuto"]
y = averages_by_team["totalAutoCoral"]
teams = averages_by_team["team_key"]
fig = px.scatter(x=x, y=y, text=teams, labels={'x': "Avg Algae Scored", 'y': "Avg Coral Scored in Net"}, title="Coral vs Algae AUTO")
colors = [color_picker(team) for team in teams] # Apply color_picker correctly
fig.update_traces(marker=dict(color=colors, symbol='circle', size=10), textposition="middle left")
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def coral_level_distribution_teleop_bar():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
# coral level distribution -- stacked bar graph
averages_by_team["team_key"] = averages_by_team["team_key"].astype(str)
x = averages_by_team["team_key"]
y1 = averages_by_team["teleopCoralL1"]
y2 = averages_by_team["teleopCoralL2"]
y3 = averages_by_team["teleopCoralL3"]
y4 = averages_by_team["teleopCoralL4"]
fig = go.Figure()
fig.add_trace(go.Bar(
x=x,
y=y1,
name="Coral L1",
marker=dict(color="#9BE3DF", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y2,
name="Coral L2",
marker=dict(color="#F7898A", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y3,
name="Coral L3",
marker=dict(color="#FACE9F", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y4,
name="Coral L4",
marker=dict(color="#FFE493", line=dict(color="white", width=1))
))
ticktext = [f'<span style="color:{color_map[team]};">{team}</span>' for team in x]
fig.update_layout(
barmode="stack", # Stack the bars
xaxis=dict(
title="Team",
tickmode="array",
tickvals=all_teams,
ticktext= ticktext,
tickfont=dict(size=14) # Adjust font size if needed
),
yaxis_title="Avg Coral in L1, L2, L3, L4",
title="Coral Level Distribution Teleop",
legend_title="Coral Levels",
template="plotly_white"
)
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def coral_level_distribution_auto_bar():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
# coral level distribution -- stacked bar graph
averages_by_team["team_key"] = averages_by_team["team_key"].astype(str)
x = averages_by_team["team_key"]
y1 = averages_by_team["autoCoralL1"]
y2 = averages_by_team["autoCoralL2"]
y3 = averages_by_team["autoCoralL3"]
y4 = averages_by_team["autoCoralL4"]
fig = go.Figure()
fig.add_trace(go.Bar(
x=x,
y=y1,
name="Coral L1",
marker=dict(color="#9BE3DF", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y2,
name="Coral L2",
marker=dict(color="#F7898A", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y3,
name="Coral L3",
marker=dict(color="#FACE9F", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y4,
name="Coral L4",
marker=dict(color="#FFE493", line=dict(color="white", width=1))
))
ticktext = [
f"<span style='color:{'red' if team in red_teams else 'blue'}'>{team}</span>"
for team in all_teams
]
fig.update_layout(
barmode="stack", # Stack the bars
xaxis=dict(
title="Team",
tickmode="array",
tickvals=all_teams,
ticktext= ticktext,
tickfont=dict(size=14) # Adjust font size if needed
),
yaxis_title="Avg Coral in L1, L2, L3, L4",
title="Coral Level Distribution Auto",
legend_title="Coral Levels",
template="plotly_white"
)
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def coral_point_distribution_teleop_bar():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
# coral level distribution -- stacked bar graph
averages_by_team["team_key"] = averages_by_team["team_key"].astype(str)
x = averages_by_team["team_key"]
y1 = averages_by_team["teleopCoralL1"]*2
y2 = averages_by_team["teleopCoralL2"]*3
y3 = averages_by_team["teleopCoralL3"]*4
y4 = averages_by_team["teleopCoralL4"]*5
fig = go.Figure()
fig.add_trace(go.Bar(
x=x,
y=y1,
name="Coral L1",
marker=dict(color="#9BE3DF", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y2,
name="Coral L2",
marker=dict(color="#F7898A", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y3,
name="Coral L3",
marker=dict(color="#FACE9F", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y4,
name="Coral L4",
marker=dict(color="#FFE493", line=dict(color="white", width=1))
))
ticktext = [
f"<span style='color:{'red' if team in red_teams else 'blue'}'>{team}</span>"
for team in all_teams
]
fig.update_layout(
barmode="stack", # Stack the bars
xaxis=dict(
title="Team",
tickmode="array",
tickvals=all_teams,
ticktext= ticktext,
tickfont=dict(size=14) # Adjust font size if needed
),
yaxis_title="Avg Coral in L1, L2, L3, L4",
title="Coral Point Distribution by Level Teleop",
legend_title="Coral Levels",
template="plotly_white"
)
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def coral_point_distribution_auto_bar():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
averages_by_team["team_key"] = averages_by_team["team_key"].astype(str)
x = averages_by_team["team_key"]
y1 = averages_by_team["autoCoralL1"]*3
y2 = averages_by_team["autoCoralL2"]*4
y3 = averages_by_team["autoCoralL3"]*6
y4 = averages_by_team["autoCoralL4"]*7
fig = go.Figure()
fig.add_trace(go.Bar(
x=x,
y=y1,
name="Coral L1",
marker=dict(color="#9BE3DF", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y2,
name="Coral L2",
marker=dict(color="#F7898A", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y3,
name="Coral L3",
marker=dict(color="#FACE9F", line=dict(color="white", width=1))
))
fig.add_trace(go.Bar(
x=x,
y=y4,
name="Coral L4",
marker=dict(color="#FFE493", line=dict(color="white", width=1))
))
ticktext = [
f"<span style='color:{'red' if team in red_teams else 'blue'}'>{team}</span>"
for team in all_teams
]
fig.update_layout(
barmode="stack", # Stack the bars
xaxis=dict(
title="Team",
tickmode="array",
tickvals=all_teams,
ticktext= ticktext,
tickfont=dict(size=14) # Adjust font size if needed
),
yaxis_title="Avg Coral Points in L1, L2, L3, L4",
title="Coral Point Distribution by Level Auto",
legend_title="Coral Levels",
template="plotly_white"
)
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def endgame_bar():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
endgame_df = new_df.groupby('team_key')['bargeStatus'].value_counts().unstack(fill_value=0).reset_index()
endgame_df = endgame_df.set_index("team_key").loc[all_teams].reset_index()
# Populate data if the columns don't exist
if 'Parked' not in endgame_df.columns:
endgame_df['Parked'] = 0
if 'Shallow Cage' not in endgame_df.columns:
endgame_df['Shallow Cage'] = 0
if 'Deep Cage' not in endgame_df.columns:
endgame_df['Deep Cage'] = 0
# Convert "team_key" to string if not already done
endgame_df["team_key"] = endgame_df["team_key"].astype(str)
x = endgame_df["team_key"]
y1 = endgame_df["Parked"]
y2 = endgame_df["Shallow Cage"]
y3 = endgame_df["Deep Cage"]
# Create the bar graph
fig = go.Figure()
# Add the first bar (Park)
fig.add_trace(go.Bar(
x=x,
y=y1,
name="Park",
marker=dict(color="#EB89B5", line=dict(color="white", width=1))
))
# Add the second bar (Shallow), stacked on top of Park
fig.add_trace(go.Bar(
x=x,
y=y2,
name="Shallow",
marker=dict(color="#FFD7E9", line=dict(color="white", width=1))
))
# Add the third bar (Deep), stacked on top of Park + Shallow
fig.add_trace(go.Bar(
x=x,
y=y3,
name="Deep",
marker=dict(color="#FFF2AF", line=dict(color="white", width=1))
))
ticktext = [
f"<span style='color:{'red' if team in red_teams else 'blue'}'>{team}</span>"
for team in all_teams
]
# Update layout for stacking and aesthetics
fig.update_layout(
barmode="stack", # Stack the bars
xaxis=dict(
title="Team",
tickmode="array",
tickvals=all_teams,
ticktext= ticktext,
tickfont=dict(size=14) # Adjust font size if needed
),
yaxis_title="Endgame Status",
title="Endgame Status",
legend_title="Status Levels",
template="plotly_white"
)
return ui.HTML(fig.to_html(full_html=False))
@output
@render.data_frame
def key_stats_dt():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
return render.DataGrid(averages_by_team_all.round(2), filters=True)
@output
@render.ui
def our_matches_switch_ui():
if input.match_or_team() == "Match Number":
return ui.input_switch("our_matches_switch", "Filter Our Matches", False)
else:
return None
@render.ui
def match_list_combobox():
if input.match_or_team() == "Match Number":
if input.our_matches_switch():
# Fix: Use .apply() to check if OUR_TEAM_NUMBER is in the list of team keys
matches_df_copy = matches_df[
matches_df["alliances.blue.team_keys"].apply(lambda teams: any(str(OUR_TEAM_NUMBER) in team for team in teams)) |
matches_df["alliances.red.team_keys"].apply(lambda teams: any(str(OUR_TEAM_NUMBER) in team for team in teams))]
match_numbers = matches_df_copy["match_number"]
else:
match_numbers = matches_df["match_number"]
return (
ui.input_select(
"match_select",
"Match",
{
str(match_number): str(match_number)
for match_number in sorted(match_numbers)
},
),
)
else:
team_numbers = df_unique_teams["team_key"].astype(str).tolist()
return ui.div(
ui.input_select("red1", "Red Alliance Teams", choices=team_numbers),
ui.input_select("red2", "", choices=team_numbers),
ui.input_select("red3", "", choices=team_numbers),
ui.input_select("blue1", "Blue Alliance Teams", choices=team_numbers),
ui.input_select("blue2", "", choices=team_numbers),
ui.input_select("blue3", "", choices=team_numbers),
)
@output
@render.ui
def team_list_combobox():
team_numbers = df_unique_teams["team_key"].astype(str).tolist() # Ensure values are strings
return ui.input_select(
"team_select", # Assign a unique ID to retrieve the selected value
"Select a Team", # Label for dropdown
choices={team: team for team in sorted(team_numbers, key=lambda x: int(x))}, # Properly map values
selected=str(OUR_TEAM_NUMBER),
)
@reactive.calc
def filter_by_team():
team_number = input.team_select() # Get selected team from dropdown
return df[df["team_key"] == team_number]
@output
@render.data_frame
def key_stats_by_team_dt():
return render.DataGrid(filter_by_team().round(2), filters=True)
@output
@render.ui
def team_piece_summary_auto():
team_data = filter_by_team()
return px.bar(
team_data,
x="match_number",
y=[
"autoCoralL1",
"autoCoralL2",
"autoCoralL3",
"autoCoralL4",
"autoAlgaeNet",
"autoAlgaeProc",
],
)
@output
@render.ui
def team_piece_summary_teleop():
team_data = filter_by_team()
return px.bar(
team_data,
x="match_number",
y=[
"teleopCoralL1",
"teleopCoralL2",
"teleopCoralL3",
"teleopCoralL4",
"teleopAlgaeNet",
"teleopAlgaeProc"
],
)
# print(df.keys())
@output
@render.ui
def statbotics_scatter():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
teams = averages_by_team_all["team_key"]
x = averages_by_team_all["endgamePlusAuto"]
y = averages_by_team_all["totalTeleopPoints"]
# Create the plot
fig = px.scatter(averages_by_team_all, x="endgamePlusAuto", y="totalTeleopPoints", text=teams,
title="Auto & Endgame vs Teleop", color="totalPieces", hover_name="team_key", hover_data={
"team_key": "",
"totalPieces":":.2f",
"totalAutoPoints":":.2f",
"totalAutoCoral":":.2f",
"algaeAuto":":.2f",
"totalTeleopPoints":":.2f",
"totalTeleopCoral":":.2f",
"algaeTeleop":":.2f",
"endgamePoints":":.2f",
"endgamePlusAuto":":.2f",
})
# Add custom color for each point based on the team_key
fig.update_traces(marker=dict(
symbol='circle', size=10),
textposition="middle left")
return ui.HTML(fig.to_html(full_html=False))
@output
@render.ui
def avg_coral_red_box():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
red_df = averages_by_team.loc[averages_by_team["team_key"].isin(red_teams)]
avg_coral_pieces = red_df["totalTeleopCoral"].sum()+red_df["totalAutoCoral"].sum()
return ui.value_box(
title="Avg Coral Pieces RED",
value=str(round(float(avg_coral_pieces), 1))
)
@output
@render.ui
def avg_coral_blue_box():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
blue_df = averages_by_team.loc[averages_by_team["team_key"].isin(blue_teams)]
avg_coral_pieces = blue_df["totalTeleopCoral"].sum()+blue_df["totalAutoCoral"].sum()
return ui.value_box(
title="Avg Coral Pieces BLUE",
value=str(round(float(avg_coral_pieces), 1))
)
@output
@render.ui
def avg_endgame_red_box():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
red_df = averages_by_team.loc[averages_by_team["team_key"].isin(red_teams)]
endgame_avg = red_df["endgamePoints"].sum()
return ui.value_box(
title="Avg Endgame Points RED",
value=str(round(float(endgame_avg), 1))
)
@output
@render.ui
def avg_endgame_blue_box():
new_df, color_map, red_teams, blue_teams, all_teams, averages_by_team, averages_by_team_all = get_match_data()
blue_df = averages_by_team.loc[averages_by_team["team_key"].isin(blue_teams)]
endgame_avg = blue_df["endgamePoints"].sum()
return ui.value_box(
title="Avg Endgame Points BLUE",
value=str(round(float(endgame_avg), 1))
)
# @reactive.calc
# def filter_by_match():
# match_number = int(input.match_select())
# scouted_data = df[
# df["match_number"] == match_number
# ]
# statbotics_data = statbotics_df[
# statbotics_df.match_number == match_number
# ]
# return scouted_data, statbotics_data
@render.text
def red_statbotics_prediction():
match_num = int(input.match_select())
statbotics_data_filtered = statbotics_df.loc[
(statbotics_df["match_number"] == match_num )
& (statbotics_df["comp_level"] == "qm")
]
return ui.value_box(
title="Prediction RED",
value=str(statbotics_data_filtered["pred.red_score"].sum())
)
@render.text
def blue_statbotics_prediction():
match_num = int(input.match_select())
statbotics_data_filtered = statbotics_df.loc[
(statbotics_df["match_number"] == match_num)
& (statbotics_df["comp_level"] == "qm")
]
return ui.value_box(
title="Prediction BLUE",
value=str(statbotics_data_filtered["pred.blue_score"].sum())
)
@output
@render.data_frame
def statbotics_dataframe():
return render.DataGrid(statbotics_df, filters=True)
app = App(app_ui, server)