-
Notifications
You must be signed in to change notification settings - Fork 8
/
imagenet_dataset.py
182 lines (152 loc) · 6.82 KB
/
imagenet_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch.utils.data as data
from PIL import Image
import os
import os.path
import random
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm']
def is_image_file(filename):
"""Checks if a file is an image.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx, group = None, target_abs_index = None):
images = []
dir = os.path.expanduser(dir)
for target in sorted(os.listdir(dir)):
# pdb.set_trace()
if target not in class_to_idx:
continue
if int(class_to_idx[target]) not in group:
continue
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
if is_image_file(fname):
path = os.path.join(root, fname)
if target_abs_index != None :
item = (path, target_abs_index)
else:
item = (path, class_to_idx[target])
images.append(item)
return images # random.sample(images, 5000) # Used for debug
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class ImageFolder(data.Dataset):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader, activations = False, group = None, retrain = False):
classes, class_to_idx = find_classes(root)
# Case: Evaluate but pull from training set
if activations and group:
imgs = make_dataset(root, class_to_idx, group)
elif group is not None: # Case: Train / Evaluate: pos/neg according to group
if retrain: # Subcase: Retraining (Training Set Creation)
imgs = []
for abs_index, class_index in enumerate(group):
pos_imgs = make_dataset(root, \
class_to_idx, \
group=[class_index], \
target_abs_index=abs_index + 1)
multiplier = max(1, 0) # Multiple used to balance, if wanted
imgs.extend(pos_imgs)
negative_numbers = len(imgs)
negative_indices = [i for i in range(1000) if i not in group]
neg_imgs = make_dataset(root, \
class_to_idx, \
group=negative_indices, \
target_abs_index=0)
neg_imgs = random.sample(neg_imgs, negative_numbers)
imgs.extend(neg_imgs)
print("Num images in training set: {}".format(len(imgs)))
# print("Added {} positive images with target index {}".format(len(pos_imgs)*multiplier, abs_index))
else: # Subcase: Evaluation (Validation Set Creation)
imgs = []
for abs_index, class_index in enumerate(group):
pos_imgs = make_dataset(root, \
class_to_idx, \
group=[class_index], \
target_abs_index=abs_index + 1)
imgs.extend(pos_imgs)
negative_numbers = len(imgs)
print("positive images in val loader: ", negative_numbers)
negative_indices = [i for i in range(1000) if i not in group]
neg_imgs = make_dataset(root, \
class_to_idx, \
group=negative_indices, \
target_abs_index=0)
neg_imgs = random.sample(neg_imgs, negative_numbers)
imgs.extend(neg_imgs)
print("Num images in validation set {}".format(len(imgs)))
else: # Case: Default
imgs = make_dataset(root, class_to_idx, group = [i for i in range(1000)])
if len(imgs) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.classes = classes
self.class_to_idx = class_to_idx
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
path, target = self.imgs[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.imgs)