-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.hpp
542 lines (542 loc) · 18.9 KB
/
matrix.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#pragma once
#ifndef _MATHLAB_MATRIX_
#define _MATHLAB_MATRIX_ 1
#include "vector.hpp"
#include <initializer_list>
namespace Mathlab {
template <Arithmetic _T, size_t M, size_t N = M> class Matrix {
static_assert(M > 0 && N > 0 && NumericType<_T>);
_T _data[N][M];
typedef struct { size_t a, b; } _index_t;
public:
typedef _T ValueType;
static constexpr size_t rows = M;
static constexpr size_t columns = N;
constexpr Matrix() noexcept : _data{ {0} } {} //Zero Matrix
constexpr Matrix(const _T& t) noexcept : _data{ {t} } {
for (size_t i = 1; i < M && i < N; ++i) _data[i][i] = t;
};
template <Arithmetic _S> constexpr Matrix(const InitializerList<_S>& il) noexcept {
size_t a = 0;
for (_S s : il) _data[a / N][a % N] = s, ++a;
while (a < M * N) _data[a / N][a % N] = 0, ++a;
}
template <Arithmetic _S> constexpr Matrix(const _S(&il)[M][N]) noexcept {
size_t a = 0;
for (_S s : il) _data[a / N][a % N] = s, ++a;
while (a < M * N) _data[a / N][a % N] = 0, ++a;
}
template <Arithmetic _S> constexpr Matrix(const Matrix<_S, M, N>& other) noexcept {
for (size_t i = 0; i < M; ++i) for (size_t j = 0; j < N; ++j)
_data[i][j] = other[i][j];
}
constexpr Matrix(const Matrix& other) noexcept = default;
template <Arithmetic _S, size_t P, size_t Q>
explicit constexpr Matrix(const Matrix<_S, P, Q>& other) noexcept
requires (P <= M && Q <= N) {
for (size_t i = 0; i < P; ++i) for (size_t j = 0; j < Q; ++j)
_data[i][j] = other[i][j];
}
constexpr _T* begin() noexcept { return *_data; }
constexpr _T* end() noexcept { return *_data + M * N; }
constexpr const _T* begin() const noexcept { return *_data; }
constexpr const _T* end() const noexcept { return *_data + M * N; }
constexpr operator bool() const noexcept {
for (size_t i = 0; i < M; ++i) for (size_t j = 0; j < N; ++j)
if (_data[i][j]) return true;
return false;
}
constexpr _T& at(size_t z) noexcept {
_T t = 0;
return z >= M * N ? t : _data[z / N][z % N];
}
constexpr const _T& at(size_t z) const noexcept {
return z >= M * N ? 0 : _data[z / N][z % N];
}
constexpr _T* operator[](size_t z) noexcept {
return _data[z];
}
constexpr const _T* operator[](size_t z) const noexcept {
return _data[z];
}
constexpr _T* operator[](_index_t z) noexcept {
return _data[z.a][z.b];
}
constexpr const _T* operator[](_index_t z) const noexcept {
return _data[z.a][z.b];
}
#ifdef __cpp_multidimensional_subscript
constexpr _T& operator[](size_t a, size_t b) noexcept {
return _data[a][b];
}
constexpr const _T& operator[](size_t a, size_t b) const noexcept {
return _data[a][b];
}
#endif
template <Arithmetic _S>
constexpr Matrix& operator+=(const Matrix<_S, M, N>& other) noexcept {
for (size_t i = 0; i < M; ++i) for (size_t j = 0; j < N; ++j)
_data[i][j] += other._data[i][j];
return *this;
}
template <Arithmetic _S>
constexpr Matrix& operator-=(const Matrix<_S, M, N>& other) noexcept {
for (size_t i = 0; i < M; ++i) for (size_t j = 0; j < N; ++j)
_data[i][j] -= other._data[i][j];
return *this;
}
template <Arithmetic _S> constexpr Matrix& operator*=(const _S& s) noexcept {
for (size_t i = 0; i < M; ++i) for (size_t j = 0; j < N; ++j)
_data[i][j] *= s;
return *this;
}
template <Arithmetic _S> constexpr Matrix& operator/=(const _S& s) noexcept {
for (size_t i = 0; i < M; ++i) for (size_t j = 0; j < N; ++j)
_data[i][j] /= s;
return *this;
}
template <Arithmetic _S>
constexpr bool operator==(const Matrix<_S, M, N>& rhs) const noexcept {
for (size_t i = 0; i < M; i++) for (size_t j = 0; j < N; j++)
if (_data[i][j] != rhs._data[i][j]) return false;
return true;
}
constexpr Matrix<_T, M - 1, N - 1> subm(size_t x, size_t y) const noexcept {
Matrix<_T, M - 1, N - 1> m{ 0 };
for (size_t i = 0; i < M - 1; ++i) for (size_t j = 0; j < N - 1; ++j)
m[i][j] = _data[i + (i >= x)][j + (j >= y)];
return m;
}
constexpr Matrix<_T, M - 1, N> rsubm(size_t x) const noexcept {
Matrix<_T, M - 1, N> m{ 0 };
for (size_t i = 0; i < M - 1; ++i) for (size_t j = 0; j < N; ++j)
m[i][j] = _data[i + (i >= x)][j];
return m;
}
constexpr Matrix<_T, M, N - 1> csubm(size_t y) const noexcept {
Matrix<_T, M, N - 1> m{ 0 };
for (size_t i = 0; i < M; ++i) for (size_t j = 0; j < N - 1; ++j)
m[i][j] = _data[i][j + (j >= y)];
return m;
}
constexpr Vector<_T, N> row(size_t x) const noexcept {
Vector<_T, N> m{ 0 };
for (size_t j = 0; j < N; ++j) m[j] = _data[x][j];
return m;
}
constexpr Vector<_T, M> column(size_t y) const noexcept {
Vector<_T, M> m{ 0 };
for (size_t i = 0; i < M; ++i) m[i] = _data[i][y];
return m;
}
constexpr Matrix& rswap(size_t dst, size_t src) noexcept {
if (dst != src) for (size_t j = 0; j < N; ++j)
swap(_data[dst][j], _data[src][j]);
return *this;
}
constexpr Matrix& radd(size_t dst, size_t src, _T t = 0) noexcept {
if (t) for (size_t j = 0; j < N; ++j)
_data[dst][j] += _data[src][j] * t;
return *this;
}
constexpr Matrix& rmul(size_t dst, _T t = 1) noexcept {
if (t && t != 1) for (size_t j = 0; j < N; ++j)
_data[dst][j] *= t;
return *this;
}
constexpr Matrix& cswap(size_t dst, size_t src) noexcept {
if (dst != src)
for (size_t i = 0; i < M; ++i) swap(_data[i][dst], _data[i][src]);
return *this;
}
constexpr Matrix& cadd(size_t dst, size_t src, _T t = 0) noexcept {
if (t) for (size_t i = 0; i < M; ++i)
_data[i][dst] += _data[i][src] * t;
return *this;
}
constexpr Matrix& cmul(size_t dst, _T t = 1) noexcept {
for (size_t i = 0; i < M; ++i) _data[i][dst] *= t;
return *this;
}
constexpr operator _T() noexcept requires (M == 1 && N == 1) {
return _data[0][0];
}
template <Arithmetic _S> constexpr operator Vector<_S, M* N>()
noexcept requires (M == 1 || N == 1) {
Vector<_S, M* N> v = { _data[0][0] };
for (size_t j = 1; j < M * N; ++j) v[j] = _data[0][j];
}
};
template <class _T, class _S, size_t M, size_t N> inline constexpr auto
operator+(const Matrix<_T, M, N>& lhs, const Matrix<_S, M, N>& rhs) noexcept {
Matrix<CommonType<_T, _S>, M, N> m = lhs;
return m += rhs;
}
template <class _T, class _S, size_t M, size_t N> inline constexpr auto
operator-(const Matrix<_T, M, N>& lhs, const Matrix<_S, M, N>& rhs) noexcept {
Matrix<CommonType<_T, _S>, M, N> m = lhs;
return m -= rhs;
}
template <class _T, class _S, size_t M, size_t N> inline constexpr auto
operator*(const Matrix<_T, M, N>& lhs, const _S& rhs) noexcept {
Matrix<CommonType<_T, _S>, M, N> m = lhs;
return m *= rhs;
}
template <class _T, class _S, size_t M, size_t N> inline constexpr auto
operator*(const _T& lhs, const Matrix<_S, M, N>& rhs) noexcept {
return rhs * lhs;
}
template <class _T, class _S, size_t M, size_t N> inline constexpr auto
operator/(const Matrix<_T, M, N>& lhs, const _S& rhs) noexcept {
Matrix<CommonType<_T, _S>, M, N> m = lhs;
return m /= rhs;
}
template <class _T, size_t M, size_t N>
inline constexpr Matrix<_T, M, N> operator+(const Matrix<_T, M, N>& m) noexcept {
return m * 1;
}
template <class _T, size_t M, size_t N>
inline constexpr Matrix<_T, M, N> operator-(const Matrix<_T, M, N>& m) noexcept {
return m * -1;
}
template <class _T, class _S, size_t M, size_t N, size_t P>
inline constexpr Matrix<Multiplies<_T, _S>, M, P>
operator*(const Matrix<_T, M, N>& lhs, const Matrix<_S, N, P>& rhs) noexcept {
Matrix<long double, M, P> m{ 0 };
for (size_t i = 0; i < M; ++i)
for (size_t k = 0; k < P; ++k)
for (size_t j = 0; j < N; ++j)
m[{i, k}] += lhs[i][j] * rhs[{j, k}];
return m;
}
template <class _T, class _S, size_t M, size_t N>
inline constexpr Vector<Multiplies<_T, _S>, M>
operator*(const Matrix<_T, M, N>& lhs, const Vector<_S, N>& rhs) noexcept {
Vector<long double, M> m{ 0 };
for (size_t i = 0; i < M; ++i)
for (size_t j = 0; j < N; ++j)
m[i] += lhs[i][j] * rhs[j];
return m;
}
template <class _T, class _S, size_t M, size_t N>
inline constexpr Vector<Multiplies<_T, _S>, N>
operator*(const Vector<_T, M> lhs, const Matrix<_S, M, N>& rhs) noexcept {
Vector<long double, N> m{ 0 };
for (size_t i = 0; i < M; ++i)
for (size_t j = 0; j < N; ++j)
m[i] += lhs[i] * rhs[i][j];
return m;
}
//2 "Literal" Matrices
template <class _T, size_t N>
constexpr Matrix<_T, N, N> identityMatrix() {
Matrix<_T, N, N> m{ 0 };
for (size_t i = 0; i < N; ++i) m[{i, i}] = 1;
return m;
}
template <class _T, size_t N>
constexpr Matrix<_T, N, N> exchangeMatrix() {
Matrix<_T, N, N> m{ 0 };
for (size_t i = 0; i < N; ++i) m[{i, N - 1 - i}] = 1;
return m;
};
template <class _T, size_t N>
inline constexpr Matrix<_T, N, N> primaryMatrix1(size_t a, size_t b) noexcept {
Matrix<_T, N, N> m = identityMatrix<_T, N>();
m[{a, b}] = m[{b, a}] = 1;
m[{a, a}] = m[{b, b}] = 0;
return m;
}
template <class _T, size_t N>
inline constexpr Matrix<_T, N, N> primaryMatrix2(size_t a, _T t) noexcept {
Matrix<_T, N, N> m = identityMatrix<_T, N>();
m[{a, a}] = t;
return m;
}
template <class _T, size_t N>
inline constexpr Matrix<_T, N, N> primaryMatrix3(size_t a, size_t b, _T t) noexcept {
Matrix<_T, N, N> m = identityMatrix<_T, N>();
m[{a, b}] = t;
return m;
}
template <class _T, size_t N>
inline constexpr Matrix<_T, N, N> redhefferMatrix() noexcept {
Matrix<_T, N, N> m{ 1 };
for (size_t i = 1; i < N; ++i)
for (size_t j = 0; j <= i; ++j)
m[i][j] = !(j && (j + 1) % (i + 1));
return m;
}
//3 Matrix operations
template <class _T, size_t M, size_t N>
inline constexpr Matrix<_T, N, M> transpose(const Matrix<_T, M, N>& m) noexcept {
Matrix<_T, N, M> n{ 0 };
for (size_t i = 1; i <= M; ++i)
for (size_t j = 1; j <= N; ++j)
n[{j, i}] = m[i][j];
return n;
}
template <class _T, size_t M, size_t N>
inline constexpr Matrix<_T, N, M> transjugate(const Matrix<_T, M, N>& m) noexcept {
Matrix<_T, N, M> n{ 0 };
for (size_t i = 1; i <= M; ++i)
for (size_t j = 1; j <= N; ++j)
n[{j, i}] = conj(m[i][j]);
return n;
}
template <class _T, size_t N> constexpr _T det(const Matrix<_T, N, N>& m) noexcept {
Matrix<_T, N, N> a = m;
_T t = 1;
for (size_t i = 0, n = 0; i < N; n = ++i) {
if (!a[{i, i}]) while (++n <= N) {
if (n == N) return 0;
if (a[{n, i}]) {
a.radd(i, n, 1); break;
}
}//top left corner of a is non-zero vvv
t *= a[{i, i}];
for (n += n == i; n < N; ++n) a.rsub(n, i, a[{n, i}] / a[{i, i}]);
}
return t;
}
template <class _T>
inline constexpr _T det(const Matrix<_T, 1, 1>& m) noexcept {
return m[{0, 0}];
}
template <class _T>
inline constexpr _T det(const Matrix<_T, 2, 2>& m) noexcept {
return m[{0, 0}] * m[{1, 1}] - m[{0, 1}] * m[{1, 0}];
}
template <class _T, size_t N>
constexpr Matrix<_T, N, N> adj(const Matrix<_T, N, N>& m) noexcept {
Matrix<_T, N, N> a = m;
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j)
a[{j, i}] = det(m.subm(i, j));
return a;
}
template <class _T>
constexpr Matrix<_T, 1, 1> adj(const Matrix<_T, 1, 1>& m) noexcept {
return { 1 };
}
template <class _T, size_t N>
constexpr Matrix<_T, N, N> inv(const Matrix<_T, N, N>& m) noexcept {
return adj(m) / det(m);
}
template <class _T, size_t N>
constexpr _T track(const Matrix<_T, N, N>& m) noexcept {
_T t = m[{0, 0}];
for (size_t n = 1; n < N; ++n) t += m[{n, n}];
return t;
}
template <class _T, size_t M, size_t N>
constexpr size_t rank(const Matrix<_T, M, N>& m) noexcept {
Matrix<long double, M, N> a = m;
size_t t = 0;
for (size_t i = 0, n = 0; i < N && i < M; n = ++i) {
if (!a[{i, i}]) while (++n < N) {
if (a[{n, i}]) {
a.rswap(i, n); break;
}
}//top left corner of a is non-zero vvv
if (n < N) ++t;
for (n += n == i; n < M; ++n) a.radd(n, i, -a[{n, i}] / a[{i, i}]);
}
return t;
}
template <class _T, size_t N> inline constexpr Matrix<_T, N, N>
pow(const Matrix<_T, N, N>& m, int n) {
return n < 0 ? pow(inv(m), -n) : n ? m * pow(m, n - 1) : identityMatrix<_T, N>();
}
template <class _T, size_t N> inline constexpr Matrix<_T, N, N>
exp(const Matrix<_T, N, N>& m) {
Matrix<_T, N, N> result = identityMatrix<_T, N>() + m, n = m;
_T t = 1;
while (m + t * n != m) result += n *= m / (t += 1);
return result;
}
template <class _T, class _S, size_t M, size_t N, size_t P, size_t Q>
inline constexpr auto operator->*(const Matrix<_T, M, N>& m, const Matrix<_T, P, Q>& n) {
Matrix<decltype(_T()* _S()), M* P, N* Q> result{ 0 };
_T t = 1;
while (m + t * n != m) result += n *= m / (t += 1);
return result;
}
//4 Matrix pattern properties
template <class _T, size_t N>
inline constexpr bool isSymmetric(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j)
if (m[{j, i}] != m[i][j]) return 0;
return 1;
}
template <class _T, size_t N>
inline constexpr bool isSkewSymmetric(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j)
if (m[{j, i}] != -m[i][j]) return 0;
return 1;
}
template <class _T, size_t N>
inline constexpr bool isHermitian(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j)
if (m[{j, i}] != conj(m[i][j])) return 0;
return 1;
}
template <class _T, size_t N>
inline constexpr bool isSkewHermitian(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j)
if (m[{j, i}] != -conj(m[i][j])) return 0;
return 1;
}
template <class _T, size_t N>
inline constexpr bool isCircular(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j) {
_T t = 0;
for (size_t k = 1; k < N; ++k) t += m[{i, k}] * conj(m[{k, j}]);
if (i == j != t) return 0;
}
return 1;
}
template <class _T, size_t N>
inline constexpr bool isIdempotent(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j) {
_T t = 0;
for (size_t k = 1; k < N; ++k) t += m[{i, k}] * m[{k, j}];
if (m[i][j] != t) return 0;
}
return 1;
}
template <class _T, size_t N>
inline constexpr bool isInvolutory(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j) {
_T t = 0;
for (size_t k = 1; k < N; ++k) t += m[{i, k}] * m[{k, j}];
if (i == j != t) return 0;
}
return 1;
}
template <class _T, size_t N>
inline constexpr size_t isNilpotent(const Matrix<_T, N, N>& m) noexcept {
Matrix<_T, N, N> n = m;
for (size_t i = 1; i <= N; n *= m, ++i) { //from Hamilton-Cayley theorem
if (!n) return i;
}
return 0;
}
template <class _T, size_t N>
inline constexpr bool isNormal(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j) {
_T t = 0, u = 0;
for (size_t k = 1; k < N; ++k) {
t += m[{i, k}] * conj(m[{j, k}]);
u += conj(m[{k, i}])* m[{k, j}];
}
if (u != t) return 0;
}
return 1;
}
template <class _T, size_t N>
inline constexpr bool isOrthogonal(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j) {
_T t = 0;
for (size_t k = 1; k < N; ++k) t += m[{i, k}] * m[{i, k}];
if (i == j != t) return 0;
}
return 1;
}
template <class _T, size_t N>
inline constexpr bool isUnitary(const Matrix<_T, N, N>& m) noexcept {
for (size_t i = 1; i <= N; ++i) for (size_t j = 1; j <= N; ++j) {
_T t = 0;
for (size_t k = 1; k < N; ++k) t += m[{i, k}] * conj(m[{i, k}]);
if (i == j != t) return 0;
}
return 1;
}
//5 Aliases
template <class _T, size_t M> using ColumnMatrix = Matrix<_T, M, 1>;
template <class _T, size_t N> using RowMatrix = Matrix<_T, 1, N>;
template <class _T, size_t M> using ColumnVector = Matrix<_T, M, 1>;
template <class _T, size_t N> using RowVector = Matrix<_T, 1, N>;
template <class _T, size_t M> inline constexpr ColumnMatrix<_T, M>
column(const Vector<_T, M>& v) {
size_t i = 0;
ColumnMatrix<_T, M> m{ 0 };
for (_T& t : m) t = v[i++];
}
template <class _T, size_t N> inline constexpr RowMatrix<_T, N>
row(const Vector<_T, N>& v) {
size_t i = 0;
RowMatrix<_T, N> m{ 0 };
for (_T& t : m) t = v[i++];
}
//6 Linear Transformation
template <class _T, size_t N> inline constexpr Matrix<_T, N + 1>
transform(const Vector<_T, N>& v) {
Matrix<_T, N> res = identityMatrix<_T, N + 1>();
res[N] = Vector<_T, N + 1>(v, 1);
}
template <class _T> inline constexpr Matrix<Promoted<_T>, 2>
rotate2D(const _T& theta) {
Promoted<_T> c = cos(theta), s = sin(theta);
return { c, -s, s, c };
}
//Rotate by X axis
template <class _T> inline constexpr Matrix<Promoted<_T>, 3>
roll(const _T& theta) {
Promoted<_T> c = cos(theta), s = sin(theta);
return { 1, 0, 0, 0, c, -s, 0, s, c };
}
//Rotate by Y axis
template <class _T> inline constexpr Matrix<Promoted<_T>, 3>
pitch(const _T& theta) {
Promoted<_T> c = cos(theta), s = sin(theta);
return { c, 0, s, 0, 1, 0, -s, 0, c };
}
//Rotate by Z axis
template <class _T> inline constexpr Matrix<Promoted<_T>, 3>
yaw(const _T& theta) {
Promoted<_T> c = cos(theta), s = sin(theta);
return { c, -s, 0, s, c, 0, 0, 0, 1 };
}
template <class _T> inline constexpr Matrix<_T, 3>
rotateQuaternion(const Vector<_T, 4>& v) {
_T w = v[0] * v[0], x = v[1] * v[1], y = v[2] * v[2], z = v[3] * v[3],
s = 2.0 / (w + x + y + z),
a = v[0] * v[1] * s, b = v[0] * v[2] * s, c = v[0] * v[3] * s,
d = v[2] * v[3] * s, e = v[1] * v[3] * s, f = v[1] * v[2] * s;
return {
1 - s * (y + z), f - c, e + b,
f + c, 1 - s * (z + x), d - a,
e - b, d + a, 1 - s * (x + y)
};
}
template <class _T> inline constexpr Matrix<_T, 3>
rotate3D(const Vector<_T, 3>& v, const _T& theta) {
auto vs = 1 - cos(theta), s = sin(theta);
// (v.k)xk, kx(vxk)
return { 1, 0, 0, 0 };
}
template <class _T, size_t N> inline constexpr Matrix<_T, N>
scale(const Vector<_T, N>& v) {
Matrix<_T, N + 1> res = { v[0] };
for (size_t i = 1; i < N; ++i) res[i][i] = v[i];
return res;
}
//7 Affine transformation
template <class _T, size_t N> inline constexpr Matrix<_T, N + 1>
affine(const Matrix<_T, N>& linear, const Vector<_T, N>& transform = { 0 }) {
Matrix<_T, N + 1> res(1);
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) res[i][j] = linear[i][j];
res[i][N] = transform[i];
}
return res;
}
template <class _T, size_t N> inline constexpr Matrix<_T, N + 1>
transform(const Vector<_T, N>& v) {
//Equivalent to affine(I, v)
Matrix<_T, N + 1> res(1);
for (size_t i = 0; i < N; ++i) res[i][N] = v[i];
return res;
}
}
#endif