-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoly.hpp
204 lines (204 loc) · 7.32 KB
/
poly.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#pragma once
#ifndef _MATHLAB_POLY_
#define _MATHLAB_POLY_
#include "basics.hpp"
#include "iterator.hpp"
namespace Mathlab {
template <Arithmetic _T> class Polynomial;
namespace Mathlab {
template <Arithmetic _T> class Polynomial {
_T* _data;
size_t _power;
public:
typedef _T ValueType;
constexpr Polynomial(const _T& t = 0, const size_t p = 0) noexcept
: _data(new _T[p + 1]{0}), _power(p) {
_data[p] = t;
}
constexpr Polynomial(const Polynomial& r) noexcept
: _data(new _T[r.power() + 1]{*r._data}), _power(r.power()) {
for (size_t n = 1; n <= _power; ++n) {
_data[n] = r._data[n];
}
}
template <class _S> constexpr Polynomial(const Polynomial<_S>& r) noexcept
: _data(new _T[r.power() + 1]{*r._data}), _power(r.power()) {
for (size_t n = 1; n <= _power; ++n) {
_data[n] = r._data[n];
}
}
template <class _S> constexpr Polynomial(const InitializerList<_S>& r) noexcept
: _data(new _T[r.size()]{*r.begin()}), _power(r.size() - 1) {
for (size_t n = 1; n <= _power; ++n) {
_data[n] = r.begin()[n];
}
}
constexpr ~Polynomial() noexcept {
delete[] _data;
_power = 0;
}
constexpr Polynomial& operator=(const Polynomial& r) noexcept {
delete[] _data;
_data = new _T[(_power = r.power()) + 1]{*r._data};
for (size_t n = 1; n <= _power; ++n) {
_data[n] = r._data[n];
}
return *this;
}
template <class _S> constexpr Polynomial& operator=(const Polynomial<_S>& r) noexcept {
delete[] _data;
_data = new _T[(_power = r.power()) + 1]{*r._data};
for (size_t n = 1; n <= _power; ++n) {
_data[n] = r._data[n];
}
return *this;
}
// Iterators
constexpr _T* begin() noexcept { return _data; }
constexpr _T* end() noexcept { return _data + _power + 1; }
constexpr ReverseIterator<_T*> rbegin() noexcept { return _data + _power; }
constexpr ReverseIterator<_T*> rend() noexcept { return _data - 1; }
constexpr const _T* begin() const noexcept { return _data; }
constexpr const _T* end() const noexcept { return _data + _power + 1; }
constexpr ReverseIterator<const _T*> rbegin() const noexcept { return _data + _power; }
constexpr ReverseIterator<const _T*> rend() const noexcept { return _data - 1; }
// Power
constexpr size_t power(bool cap = false) const noexcept {
if (cap) return _power;
for (size_t n = _power; n; --n) if (_data[n]) return n;
return 0;
}
// Coefficient
constexpr _T& operator[](size_t n) noexcept {
_T t = 0;
return n <= _power ? _data[n] : t;
}
constexpr const _T& operator[](size_t n) const noexcept {
return n <= _power ? _data[n] : 0;
}
// Evaluation
template <Arithmetic _S> constexpr CommonType<_T, _S> operator()(const _S& x) const noexcept {
size_t n = _power;
CommonType<_T, _S> res = _data[n];
while (n--) res = _data[n] + res * x;
return res;
}
template <Arithmetic _S> constexpr CommonType<_T, _S> operator()(const Polynomial<_S>& x) const noexcept {
size_t n = _power;
Polynomial<CommonType<_T, _S>> res = _data[n];
while (n--) res = _data[n] + res * x;
return res;
}
// Reduce storage
constexpr Polynomial& shrinkToFit() noexcept {
size_t n = _power = power();
_T* temp = new _T[++n]{*_data};
while (--n) temp[n] = _data[n];
delete[] _data;
_data = temp;
return *this;
}
};
// Polynomial operations
template <class _T, class _S>
inline constexpr Polynomial<Plus<_T, _S>> operator+(const Polynomial<_T>& f, const Polynomial<_S>& g) {
size_t a = f.power(), b = g.power();
Polynomial<Plus<_T, _S>> p(0, a < b ? b : a);
for (size_t i = 0; i <= a || i <= b; ++i) p[i] = f[i] + g[i];
return p.shrinkToFit();
}
template <class _T, class _S>
inline constexpr Polynomial<Plus<_T, _S>> operator+(const Polynomial<_T>& f, const _S& g) {
return f + Polynomial<_S>(g);
}
template <class _T, class _S>
inline constexpr Polynomial<Plus<_T, _S>> operator+(const _T& f, const Polynomial<_S>& g) {
return Polynomial<_T>(f) + g;
}
template <class _T, class _S>
inline constexpr Polynomial<Minus<_T, _S>> operator-(const Polynomial<_T>& f, const Polynomial<_S>& g) {
size_t a = f.power(), b = g.power();
Polynomial<Plus<_T, _S>> p(0, a < b ? b : a);
for (size_t i = 0; i <= a || i <= b; ++i) p[i] = f[i] - g[i];
return p.shrinkToFit();
}
template <class _T, class _S>
inline constexpr Polynomial<Plus<_T, _S>> operator-(const Polynomial<_T>& f, const _S& g) {
return f - Polynomial<_S>(g);
}
template <class _T, class _S>
inline constexpr Polynomial<Plus<_T, _S>> operator-(const _T& f, const Polynomial<_S>& g) {
return Polynomial<_T>(f) - g;
}
template <class _T, class _S>
inline constexpr Polynomial<Multiplies<_T, _S>> operator*(const Polynomial<_T>& f, const Polynomial<_S>& g) {
size_t a = f.power(), b = g.power();
Polynomial<Multiplies<_T, _S>> p(0, a + b);
for (size_t i = 0; i <= a; ++i) for (size_t j = 0; j <= b; ++j) p[i + j] = f[i] * g[j];
return p.shrinkToFit();
}
template <class _T, class _S>
inline constexpr Polynomial<Plus<_T, _S>> operator*(const Polynomial<_T>& f, const _S& g) {
return f * Polynomial<_S>(g);
}
template <class _T, class _S>
inline constexpr Polynomial<Plus<_T, _S>> operator*(const _T& f, const Polynomial<_S>& g) {
return Polynomial<_T>(f) * g;
}
template <class _T, class _S>
inline constexpr Polynomial<Divides<_T, _S>> operator/(const Polynomial<_T>& f, const Polynomial<_S>& g) {
size_t a = f.power(), b = g.power();
if (a < b) return 0;
Polynomial<Divides<_T, _S>> q(0, a - b);
Polynomial<_T> r = f;
for (size_t i = a; i >= b; --i) {
auto& c = q[i - b] = r[i] / g[b];
for (size_t j = r[i] = 0; j < b; ++j) r[i - b + j] -= c * g[j];
}
return q.shrinkToFit();
}
template <class _T, class _S>
inline constexpr Polynomial<Plus<_T, _S>> operator/(const Polynomial<_T>& f, const _S& g) {
return f * Polynomial<_S>(1 / g);
}
template <class _T, class _S>
inline constexpr Polynomial<Modulus<_T, _S>> operator%(const Polynomial<_T>& f, const Polynomial<_S>& g) {
size_t a = f.power(), b = g.power();
if (a < b) return f;
Polynomial<Modulus<_T, _S>> r = f;
for (size_t i = a; i >= b; --i) {
auto c = r[i] / g[b];
for (size_t j = r[i] = 0; j < b; ++j) r[i - b + j] -= c * g[j];
}
return r;
}
template <class _T, class _S>
inline constexpr bool operator==(const Polynomial<_T>& f, const Polynomial<_S>& g) {
int a = f.power(), b = g.power();
if (a != b) return 0;
for (int i = 0; i < a; ++i) if (f[a] != f[b]) return 0;
return 1;
}
template <class _T, class _S>
inline constexpr bool operator<(const Polynomial<_T>& f, const Polynomial<_S>& g) {
int a = f.power(), b = g.power();
if (a != b) return a < b;
do {
if (f[a] != g[a]) return f[a] < g[a];
} while (a--);
return 0;
}
#if !_OLD_CXX
template <class _T, class _S>
inline constexpr Comparison<_T, _S> operator<=>(const Polynomial<_T>& f, const Polynomial<_S>& g) {
int a = f.power(), b = g.power();
if (a != b) return a <=> b;
do {
if (f[a] != g[a]) return f[a] <=> g[a];
} while (a--);
return 1;
}
#endif
}
}
#endif