-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
257 lines (204 loc) · 9.51 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from facenet_pytorch import MTCNN, InceptionResnetV1
import torch
import torch.nn as nn
from PIL import Image
import cv2
import os
import json
import time
import argparse
def euclidean_distance(out, refs):
return (out - refs).norm(dim=1)
def cosine_distance(out, refs):
# matrix multiplication between n x 512 reference embeddings and 512 output embedding =
# dot products between each of the n reference embeddings and output embedding
dot_prods = refs @ out
refs_norm = refs.norm(dim=1)
norms = out.norm() * refs_norm
return dot_prods / norms
def validate_prediction(idx, confidence, distances):
margins = confidence - torch.cat((distances[:idx], distances[idx+1:]))
min_margin = torch.min(margins)
return confidence > args.threshold and min_margin > args.margin
def find_match(output_embedding, all_embeddings):
with torch.no_grad():
dist_func, arg_func, val_func = {
'euclidean': (euclidean_distance, torch.argmin, torch.min),
'cosine': (cosine_distance, torch.argmax, torch.max)
}[args.mode]
# softmax = nn.Softmax(dim=0)
distances = dist_func(output_embedding, all_embeddings)
# probs = softmax(distances * temperature)
# print(distances, probs, arg_func(probs), val_func(probs))
index, confidence = arg_func(distances), val_func(distances)
isvalid = validate_prediction(index, confidence, distances)
if args.dev and isvalid:
devinfo.append({
'prediction_index': arg_func(distances).item(),
'prediction_confidence': val_func(distances).item(),
'distances': distances.numpy().tolist(),
'output_embeddings': output_embedding.numpy().tolist()
})
with open("logs.json", 'w') as f:
json.dump(devinfo, f)
return index, confidence, isvalid
def identify_faces(pil_image):
faces = mtcnn(pil_image)
if faces is not None:
bounding_boxes, _ = mtcnn.detect(pil_image)
preds = resnet(faces)
matches = []
for y, box in zip(preds, bounding_boxes):
if (box[2] - box[0]) < args.ignore:
continue
idx, confidence, isvalid = find_match(y, embeddings)
if isvalid:
entity = ID[idx]
matches.append((entity, confidence.item(), box))
elif args.show_unrecognised:
matches.append((None, None, box))
return matches
return None
def video():
print("Starting video capture\n")
video_capture = cv2.VideoCapture(args.camera, cv2.CAP_DSHOW)
registered_students = []
while True:
_, frame = video_capture.read()
im = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
matches = identify_faces(im)
if args.ignore != 0:
cv2.line(frame, (0, 2), (args.ignore, 2), (255, 0, 0), 5)
if matches is None:
print("> No faces found")
elif len(matches) == 0:
if args.show_unrecognised:
print("> No faces found")
else:
print("> Faces found but none recognised")
else:
for entity, confidence, box in matches:
bounds = box.astype(int)
if args.show_unrecognised and entity is None:
cv2.rectangle(frame, (bounds[0], bounds[1]), (bounds[2], bounds[3]), (0, 0, 255), 2)
else:
text = f"{entity['first']} {entity['last']}: {round(confidence*100, 2)}%"
cv2.putText(frame, text, (bounds[0], bounds[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.rectangle(frame, (bounds[0], bounds[1]), (bounds[2], bounds[3]), (0, 255, 0), 2)
if entity not in registered_students:
print(f"{entity['first']} {entity['last']} registered")
registered_students.append(entity)
cv2.imshow('TECLARS Main UI', frame)
if cv2.waitKey(1) & 0xFF == 27:
break
print()
video_capture.release()
cv2.destroyAllWindows()
time.sleep(2)
print("\nRegistered students:")
print("\n".join([
f"{e}) {entity['first']} {entity['last']}"
for e, entity in enumerate(registered_students)
]))
def test():
print("Beginning testing")
for filename in os.listdir(args.test_path):
with Image.open(os.path.join(args.test_path, filename)) as im:
matches = identify_faces(im)
if matches is None:
print(f"\nNo faces found in {filename}")
elif len(matches) == 0:
print(f"\nFaces found but none recognised in {filename}")
else:
print(f'\nFaces in {filename}')
print('\n'.join([
f"{entity['first']} {entity['last']}, confidence: {round(confidence*100, 2)}%, bounds: {box.astype(int).tolist()}"
for entity, confidence, box in matches
]))
def show():
print("Peple:")
for e, i in enumerate(ID):
print(f"{e}) {i['first']} {i['last']} ({i['image']})")
def check():
print("List of available compute devices [`name`: type]")
print("`cpu`: CPU")
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
print(f"`cuda{i}`: {torch.cuda.get_device_name(0)}")
print("\nChecking camera stream.")
print("Enter integer index of camera to check; then press `esc` to proceed to next check.")
while True:
cam = int(input("Enter camera index to check (-1 to exit): "))
if cam == -1:
break
else:
video_capture = cv2.VideoCapture(cam, cv2.CAP_DSHOW)
if video_capture is None or not video_capture.isOpened():
print(f"No device available at camera {cam}")
else:
while True:
_, frame = video_capture.read()
cv2.imshow(f'TECLARS Cam Check: Camera {cam}', frame)
if cv2.waitKey(1) & 0xFF == 27:
break
video_capture.release()
cv2.destroyAllWindows()
parser = argparse.ArgumentParser(description='TECLARS: Team Enigma CMC Lab Auto-Registration System')
parser.set_defaults(which='video')
subparsers = parser.add_subparsers(help='TECLARS subcommands (run without any subcommands to execute default system)')
parser.add_argument('-r', '--threshold', type=float, default=0.8,
help='Probability above which a face will be considered recognised')
parser.add_argument('-g', '--margin', type=float, default=0.1,
help='Minimum probability margin above next likely face for the face to be considered recognised')
parser.add_argument('-t', '--temp', type=float, default=2,
help='Temperature: higher temperature creates higher probabilities for a recognised face')
parser.add_argument('-c', '--camera', type=int, default=0,
help='Index for camera to stream from')
parser.add_argument('-d', '--device', type=str, default='auto',
help='Device to compute algorithm on')
parser.add_argument('-m', '--mode', type=str, choices=['cosine', 'euclidean'], default='cosine',
help='Distance function for evaluating the similarity between face embeddings')
parser.add_argument('-u', '--show_unrecognised', action="store_true",
help='Remove bounding boxes around unrecognised faces')
parser.add_argument('-i', '--ignore', type=int, default=100,
help='Ignore faraway faces with a width smaller than this value (set 0 to include all faces)')
parser.add_argument('-x', '--dev', action='store_true',
help="Enable developer options")
test_parser = subparsers.add_parser('test', help='Test system performance on a set of images in a given directory')
test_parser.set_defaults(which='test')
test_parser.add_argument('--test_path', type=str, default='./data/test',
help='Path to directory with test images')
test_parser = subparsers.add_parser('check', help='Checks system for available compute devices and camera streams')
test_parser.set_defaults(which='check')
test_parser = subparsers.add_parser('show', help='Shows list of students and their indices in the TECLARS system')
test_parser.set_defaults(which='show')
args = parser.parse_args()
try:
if __name__ == "__main__":
with open('data\id.json', 'r') as f:
ID = json.load(f)
if args.dev:
devinfo = []
print("Developer options enabled")
if args.which == "check":
check()
elif args.which == "show":
show()
else:
bundle = torch.load('data/embeddings.pt')
embeddings = bundle['embedding']
if args.device == "auto":
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device(args.device)
print('Running on device: {}'.format(device))
mtcnn = MTCNN(image_size=160, keep_all=True, device=device)
print("Loading face recognition model")
resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)
if args.which == 'video':
video()
elif args.which == 'test':
test()
print("\n[TECLARS terminated]")
except KeyboardInterrupt:
print("\n[TECLARS terminated by user]")