|
| 1 | +/* |
| 2 | +* MIT License |
| 3 | +* |
| 4 | +* Copyright (c) 2020 International Business Machines |
| 5 | +* |
| 6 | +* Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | +* of this software and associated documentation files (the "Software"), to deal |
| 8 | +* in the Software without restriction, including without limitation the rights |
| 9 | +* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 10 | +* copies of the Software, and to permit persons to whom the Software is |
| 11 | +* furnished to do so, subject to the following conditions: |
| 12 | +* |
| 13 | +* The above copyright notice and this permission notice shall be included in all |
| 14 | +* copies or substantial portions of the Software. |
| 15 | +* |
| 16 | +* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | +* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | +* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | +* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | +* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | +* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | +* SOFTWARE. |
| 23 | +*/ |
| 24 | + |
| 25 | +// |
| 26 | +// INFO: The API used to create these examples can be found online |
| 27 | +// ML-HElib: https://ibm.github.io/fhe-toolkit-linux” |
| 28 | +// HElib: https://ibm.github.io/fhe-toolkit-linux/html/helib/index.html |
| 29 | +// |
| 30 | + |
| 31 | +#include <iostream> |
| 32 | +#include <iomanip> |
| 33 | + |
| 34 | +#include "ClientServer.h" |
| 35 | +#include "helayers/simple_nn/SimpleNeuralNetPlain.h" |
| 36 | +#include "helayers/simple_nn/SimpleNeuralNet.h" |
| 37 | +#include "helayers/simple_nn/CipherMatrixEncoder.h" |
| 38 | + |
| 39 | + |
| 40 | +using namespace std; |
| 41 | +using namespace helayers; |
| 42 | + |
| 43 | +const string outDir = getExamplesOutputDir(); |
| 44 | +const string clientContext = outDir + "/client_context.bin"; |
| 45 | +const string serverContext = outDir + "/server_context.bin"; |
| 46 | +const string encryptedModelFile = outDir + "/encrypted_model.bin"; |
| 47 | + |
| 48 | +// paths from which to load the plain model, samples and labels |
| 49 | +const string plainModelFile = "/model_42098.h5"; |
| 50 | +const string plainSamplesFile = "/x_test.h5"; |
| 51 | +const string plainLabelsFile = "/y_test.h5"; |
| 52 | + |
| 53 | +double classificationThreshold = |
| 54 | + 0.5; // used to separate positive from negative samples |
| 55 | + |
| 56 | +// Client methods |
| 57 | + |
| 58 | +Client::Client(const string& dataDir) : currentBatch(0), dataDir(dataDir) {} |
| 59 | + |
| 60 | +Client::~Client() {} |
| 61 | + |
| 62 | +void Client::init() |
| 63 | +{ |
| 64 | + cout << "CLIENT: loading client side context . . ." << endl; |
| 65 | + he = HeContext::loadHeContextFromFile(clientContext); |
| 66 | + he->printSignature(cout); |
| 67 | + batchSize = he->slotCount(); |
| 68 | + |
| 69 | + cout << "CLIENT: loading plain model . . ." << endl; |
| 70 | + |
| 71 | + SimpleNeuralNetPlain plainNet; |
| 72 | + H5Parser parser(dataDir + plainModelFile); |
| 73 | + plainNet.loadh5(parser, |
| 74 | + std::vector<string>{"dense_1", "dense_2", "dense_3"}, |
| 75 | + std::vector<int>{29, 20, 5, 1}, |
| 76 | + batchSize); |
| 77 | + |
| 78 | + cout << "CLIENT: encrypting plain model . . ." << endl; |
| 79 | + SimpleNeuralNet netHe(*he); |
| 80 | + netHe.initFromNet(plainNet); |
| 81 | + |
| 82 | + cout << "CLIENT: saving encrypted model . . ." << endl; |
| 83 | + ofstream ofs(encryptedModelFile, ios::out | ios::binary); |
| 84 | + netHe.save(ofs); |
| 85 | + ofs.close(); |
| 86 | + |
| 87 | + cout << "CLIENT: loading plain samples . . ." << endl; |
| 88 | + TrainingSetPlain tmpTs(batchSize); |
| 89 | + tmpTs.loadFromH5(dataDir + plainSamplesFile, |
| 90 | + "x_test", |
| 91 | + dataDir + plainLabelsFile, |
| 92 | + "y_test"); |
| 93 | + numBatches = tmpTs.getNumBatches(); |
| 94 | + ts = make_shared<TrainingSetPlain>(tmpTs); |
| 95 | + |
| 96 | + cout << "Number of samples: " << ts->getNumSamples() << endl; |
| 97 | + cout << "Batch size: " << batchSize << endl; |
| 98 | + cout << "Number of batches: " << numBatches << endl; |
| 99 | +} |
| 100 | + |
| 101 | +void Client::encryptAndSaveSamples(int batch, |
| 102 | + const string& encryptedSamplesFile) const |
| 103 | +{ |
| 104 | + const CipherMatrixEncoder encoder(*he); |
| 105 | + |
| 106 | + cout << "CLIENT: encrypting plain samples . . ." << endl; |
| 107 | + HELAYERS_TIMER_PUSH("data-encrypt"); |
| 108 | + const DoubleMatrixArray& plainSamples = ts->getSamples(batch); |
| 109 | + CipherMatrix encryptedSamples(*he); |
| 110 | + encoder.encodeEncrypt(encryptedSamples, plainSamples.getTensor()); |
| 111 | + //HELAYERS_TIMER_POP(); |
| 112 | + |
| 113 | + cout << "CLIENT: saving encrypted samples . . ." << endl; |
| 114 | + ofstream ofs(encryptedSamplesFile, ios::out | ios::binary); |
| 115 | + encryptedSamples.save(ofs); |
| 116 | + ofs.close(); |
| 117 | +} |
| 118 | + |
| 119 | +void Client::decryptPredictions(const string& encryptedPredictionsFile) |
| 120 | +{ |
| 121 | + CipherMatrixEncoder encoder(*he); |
| 122 | + encoder.getEncoder().setDecryptAddedNoiseEnabled(false); |
| 123 | + cout << "CLIENT: loading encrypted predictions . . ." << endl; |
| 124 | + |
| 125 | + CipherMatrix encryptedPredictions(*he); |
| 126 | + ifstream ifs(encryptedPredictionsFile, ios::in | ios::binary); |
| 127 | + encryptedPredictions.load(ifs); |
| 128 | + ifs.close(); |
| 129 | + |
| 130 | + cout << "CLIENT: decrypting predictions . . ." << endl; |
| 131 | + HELAYERS_TIMER_PUSH("data-decrypt"); |
| 132 | + DoubleMatrixArray plainPredictions( |
| 133 | + encoder.decryptDecodeDouble(encryptedPredictions)); |
| 134 | + allPredictions.push_back(plainPredictions); |
| 135 | + HELAYERS_TIMER_POP(); |
| 136 | +} |
| 137 | + |
| 138 | +void Client::assessResults(CreditSampleResults* creditData) |
| 139 | +{ |
| 140 | + cout << "CLIENT: assessing results so far . . ." << endl; |
| 141 | + |
| 142 | + int truePositives = 0; |
| 143 | + int trueNegatives = 0; |
| 144 | + int falsePositives = 0; |
| 145 | + int falseNegatives = 0; |
| 146 | + currentBatch++; |
| 147 | + |
| 148 | + // go over each batch and count hits |
| 149 | + for (int i = 0; i < currentBatch; ++i) { |
| 150 | + |
| 151 | + const DoubleMatrixArray& labels = ts->getLabels(i); |
| 152 | + const DoubleMatrixArray& predictions = allPredictions.at(i); |
| 153 | + |
| 154 | + size_t samplesToCheck = labels.size(); |
| 155 | + if (i == numBatches - 1) // last batch may partially be populated with |
| 156 | + // "dummy" labels to ignore |
| 157 | + samplesToCheck = ts->getNumSamples() - (batchSize * (numBatches - 1)); |
| 158 | + |
| 159 | + for (int j = 0; j < samplesToCheck; ++j) { |
| 160 | + int label = labels.getMat(j).get(0, 0); |
| 161 | + int classification = |
| 162 | + (predictions.getMat(j).get(0, 0) > classificationThreshold ? 1 : 0); |
| 163 | + |
| 164 | + if (classification == label && classification == 1) |
| 165 | + truePositives++; |
| 166 | + else if (classification == label && classification == 0) |
| 167 | + trueNegatives++; |
| 168 | + else if (classification != label && classification == 1) |
| 169 | + falsePositives++; |
| 170 | + else |
| 171 | + falseNegatives++; |
| 172 | + } |
| 173 | + } |
| 174 | + |
| 175 | + double precision = ((double)truePositives / (truePositives + falsePositives)); |
| 176 | + double recall = ((double)truePositives / (truePositives + falseNegatives)); |
| 177 | + double f1Score = (2 * precision * recall) / (precision + recall); |
| 178 | + |
| 179 | + cout << endl; |
| 180 | + cout << "|---------------------------------------------|" << endl; |
| 181 | + cout << "| | True condition |" << endl; |
| 182 | + cout << "| ----------------------|" << endl; |
| 183 | + cout << "| | Positive | Negative |" << endl; |
| 184 | + cout << "|---------------------------------------------|" << endl; |
| 185 | + cout << "| Predicted | Positive |" << setw(8) << truePositives << " |" |
| 186 | + << setw(8) << falsePositives << " |" << endl; |
| 187 | + cout << "| |--------------------------------|" << endl; |
| 188 | + cout << "| condition | Negative |" << setw(8) << falseNegatives << " |" |
| 189 | + << setw(8) << trueNegatives << " |" << endl; |
| 190 | + cout << "|---------------------------------------------|" << endl; |
| 191 | + cout << endl; |
| 192 | + cout << "Precision: " << precision << endl; |
| 193 | + cout << "Recall: " << recall << endl; |
| 194 | + cout << "F1 score: " << f1Score << endl; |
| 195 | + |
| 196 | + creditData->f1Score = f1Score; |
| 197 | + creditData->recall = recall; |
| 198 | + creditData->precision = precision; |
| 199 | + creditData->truePositives = truePositives; |
| 200 | + creditData->trueNegatives = trueNegatives; |
| 201 | + creditData->falsePositives = falsePositives; |
| 202 | + creditData->falseNegatives = falseNegatives; |
| 203 | +} |
| 204 | + |
| 205 | +// Server methods |
| 206 | +Server::~Server() {} |
| 207 | + |
| 208 | +void Server::init() |
| 209 | +{ |
| 210 | + cout << "SERVER: loading server side context . . ." << endl; |
| 211 | + he = HeContext::loadHeContextFromFile(serverContext); |
| 212 | + he->printSignature(cout); |
| 213 | + |
| 214 | + cout << "SERVER: loading encrypted model . . ." << endl; |
| 215 | + ifstream ifs(encryptedModelFile, ios::in | ios::binary); |
| 216 | + SimpleNeuralNet net(*he); |
| 217 | + net.load(ifs); |
| 218 | + ifs.close(); |
| 219 | + |
| 220 | + encryptedNet = make_shared<SimpleNeuralNet>(net); |
| 221 | +} |
| 222 | + |
| 223 | +void Server::processEncryptedSamples( |
| 224 | + const string& encryptedSamplesFile, |
| 225 | + const string& encryptedPredictionsFile) const |
| 226 | +{ |
| 227 | + const CipherMatrixEncoder encoder(*he); |
| 228 | + |
| 229 | + cout << "SERVER: loading encrypted samples . . ." << endl; |
| 230 | + |
| 231 | + CipherMatrix encryptedSamples(*he); |
| 232 | + ifstream ifs(encryptedSamplesFile, ios::in | ios::binary); |
| 233 | + encryptedSamples.load(ifs); |
| 234 | + ifs.close(); |
| 235 | + |
| 236 | + cout << "SERVER: predicting over encrypted samples . . ." << endl; |
| 237 | + CipherMatrix encryptedPredictions(*he); |
| 238 | + encryptedNet->predict(encryptedSamples, encryptedPredictions); |
| 239 | + |
| 240 | + cout << "SERVER: saving encrypted predictions . . ." << endl; |
| 241 | + ofstream ofs(encryptedPredictionsFile, ios::out | ios::binary); |
| 242 | + encryptedPredictions.save(ofs); |
| 243 | + ofs.close(); |
| 244 | +} |
0 commit comments