-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathbuild.py
638 lines (569 loc) · 25.9 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import itertools
import logging
import copy
from typing import Any, Callable, Dict, List, Optional, Union
import torch
import torch.utils.data
import torch.utils.data as torchdata
import detectron2.utils.comm as comm
from detectron2.data.build import (
build_batch_data_loader,
load_proposals_into_dataset,
trivial_batch_collator,
)
from detectron2.data import MetadataCatalog
from detectron2.data.catalog import DatasetCatalog
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.samplers import InferenceSampler, TrainingSampler
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
DatasetEvaluators,
LVISEvaluator,
verify_results,
)
from fvcore.common.config import CfgNode
from omegaconf import DictConfig, OmegaConf
from .dataset_mappers import (
COCOInstanceNewBaselineDatasetMapper,
COCOPanopticNewBaselineDatasetMapper,
MaskFormerInstanceDatasetMapper,
MaskFormerPanopticDatasetMapper,
MaskFormerSemanticDatasetMapper,
ImageNetDatasetMapper,
VLPreDatasetMapper,
SunRGBDSegDatasetMapper,
ScanNetSegDatasetMapper,
BDDSemDatasetMapper,
ScanNetPanoDatasetMapper,
RefCOCODatasetMapper,
O365InstanceNewBaselineDatasetMapper,
)
from .evaluation import (InstanceSegEvaluator,
SemSegEvaluator,
COCOPanopticEvaluator,
)
from openseed.utils import configurable
from detectron2.utils.comm import get_world_size
from typing import Any, Dict, List, Set
class JointLoader(torchdata.IterableDataset):
def __init__(self, loaders, key_dataset):
dataset_names = []
for key, loader in loaders.items():
name = "{}".format(key.split('_')[0])
setattr(self, name, loader)
dataset_names += [name]
self.dataset_names = dataset_names
self.key_dataset = key_dataset
def __iter__(self):
for batch in zip(*[getattr(self, name) for name in self.dataset_names]):
yield {key: batch[i] for i, key in enumerate(self.dataset_names)}
def __len__(self):
return len(getattr(self, self.key_dataset))
def filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names):
"""
Filter out images with none annotations or only crowd annotations
(i.e., images without non-crowd annotations).
A common training-time preprocessing on COCO dataset.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
Returns:
list[dict]: the same format, but filtered.
"""
num_before = len(dataset_dicts)
def valid(anns):
for ann in anns:
if isinstance(ann, list):
for instance in ann:
if instance.get("iscrowd", 0) == 0:
return True
else:
if ann.get("iscrowd", 0) == 0:
return True
return False
dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images with no usable annotations. {} images left.".format(
num_before - num_after, num_after
)
)
return dataset_dicts
def get_detection_dataset_dicts(
dataset_names, filter_empty=True, proposal_files=None
):
"""
Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation.
Args:
dataset_names (str or list[str]): a dataset name or a list of dataset names
filter_empty (bool): whether to filter out images without instance annotations
proposal_files (list[str]): if given, a list of object proposal files
that match each dataset in `dataset_names`.
Returns:
list[dict]: a list of dicts following the standard dataset dict format.
"""
if isinstance(dataset_names, str):
dataset_names = [dataset_names]
assert len(dataset_names)
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
for dataset_name, dicts in zip(dataset_names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
if proposal_files is not None:
assert len(dataset_names) == len(proposal_files)
# load precomputed proposals from proposal files
dataset_dicts = [
load_proposals_into_dataset(dataset_i_dicts, proposal_file)
for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files)
]
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names)
assert len(dataset_dicts), "No valid data found in {}.".format(",".join(dataset_names))
return dataset_dicts
def _test_loader_from_config(cfg, dataset_name, mapper=None):
"""
Uses the given `dataset_name` argument (instead of the names in cfg), because the
standard practice is to evaluate each test set individually (not combining them).
"""
if isinstance(dataset_name, str):
dataset_name = [dataset_name]
dataset = get_detection_dataset_dicts(
dataset_name,
filter_empty=False,
proposal_files=None,
)
# import ipdb;ipdb.set_trace()
if mapper is None:
if isinstance(cfg, (DictConfig)):
cfg = OmegaConf.to_container(copy.deepcopy(cfg))
mapper_cfg = CfgNode({'INPUT': cfg['INPUT'], 'MODEL': cfg['MODEL'], 'DATASETS': cfg['DATASETS']})
mapper = DatasetMapper(mapper_cfg, False)
assert cfg['TEST']['BATCH_SIZE_TOTAL'] % get_world_size() == 0, "Evaluation total batchsize is not divisible by gpu number"
batch_size = cfg['TEST']['BATCH_SIZE_TOTAL'] // get_world_size()
return {
"dataset": dataset,
"mapper": mapper,
"num_workers": cfg['DATALOADER']['NUM_WORKERS'],
"sampler": InferenceSampler(len(dataset)),
"batch_size": batch_size,
}
@configurable(from_config=_test_loader_from_config)
def build_detection_test_loader(
dataset: Union[List[Any], torchdata.Dataset],
*,
mapper: Callable[[Dict[str, Any]], Any],
sampler: Optional[torchdata.Sampler] = None,
batch_size: int = 1,
num_workers: int = 0,
collate_fn: Optional[Callable[[List[Any]], Any]] = None,
) -> torchdata.DataLoader:
"""
Similar to `build_detection_train_loader`, with default batch size = 1,
and sampler = :class:`InferenceSampler`. This sampler coordinates all workers
to produce the exact set of all samples.
Args:
dataset: a list of dataset dicts,
or a pytorch dataset (either map-style or iterable). They can be obtained
by using :func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper: a callable which takes a sample (dict) from dataset
and returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=False)``.
sampler: a sampler that produces
indices to be applied on ``dataset``. Default to :class:`InferenceSampler`,
which splits the dataset across all workers. Sampler must be None
if `dataset` is iterable.
batch_size: the batch size of the data loader to be created.
Default to 1 image per worker since this is the standard when reporting
inference time in papers.
num_workers: number of parallel data loading workers
collate_fn: same as the argument of `torch.utils.data.DataLoader`.
Defaults to do no collation and return a list of data.
Returns:
DataLoader: a torch DataLoader, that loads the given detection
dataset, with test-time transformation and batching.
Examples:
::
data_loader = build_detection_test_loader(
DatasetRegistry.get("my_test"),
mapper=DatasetMapper(...))
# or, instantiate with a CfgNode:
data_loader = build_detection_test_loader(cfg, "my_test")
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if isinstance(dataset, torchdata.IterableDataset):
assert sampler is None, "sampler must be None if dataset is IterableDataset"
else:
if sampler is None:
sampler = InferenceSampler(len(dataset))
return torchdata.DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
drop_last=False,
num_workers=num_workers,
collate_fn=trivial_batch_collator if collate_fn is None else collate_fn,
)
def _train_loader_from_config(cfg, dataset_name, mapper, *, dataset=None, sampler=None):
cfg_datasets = cfg['DATASETS']
cfg_dataloader = cfg['DATALOADER']
if dataset is None:
dataset = get_detection_dataset_dicts(
dataset_name,
filter_empty=cfg_dataloader['FILTER_EMPTY_ANNOTATIONS'],
proposal_files=cfg_datasets['PROPOSAL_FILES_TRAIN'] if cfg_dataloader['LOAD_PROPOSALS'] else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, True)
if sampler is None:
sampler_name = cfg_dataloader['SAMPLER_TRAIN']
logger = logging.getLogger(__name__)
logger.info("Using training sampler {}".format(sampler_name))
sampler = TrainingSampler(len(dataset))
return {
"dataset": dataset,
"sampler": sampler,
"mapper": mapper,
"total_batch_size": cfg['TRAIN']['BATCH_SIZE_TOTAL'],
"aspect_ratio_grouping": cfg_dataloader['ASPECT_RATIO_GROUPING'],
"num_workers": cfg_dataloader['NUM_WORKERS'],
}
@configurable(from_config=_train_loader_from_config)
def build_detection_train_loader(
dataset, *, mapper, sampler=None, total_batch_size, aspect_ratio_grouping=True, num_workers=0
):
"""
Build a dataloader for object detection with some default features.
This interface is experimental.
Args:
dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
or a map-style pytorch dataset. They can be obtained by using
:func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper (callable): a callable which takes a sample (dict) from dataset and
returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=True)``.
sampler (torch.utils.data.sampler.Sampler or None): a sampler that
produces indices to be applied on ``dataset``.
Default to :class:`TrainingSampler`, which coordinates a random shuffle
sequence across all workers.
total_batch_size (int): total batch size across all workers. Batching
simply puts data into a list.
aspect_ratio_grouping (bool): whether to group images with similar
aspect ratio for efficiency. When enabled, it requires each
element in dataset be a dict with keys "width" and "height".
num_workers (int): number of parallel data loading workers
Returns:
torch.utils.data.DataLoader: a dataloader. Each output from it is a
``list[mapped_element]`` of length ``total_batch_size / num_workers``,
where ``mapped_element`` is produced by the ``mapper``.
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torch.utils.data.sampler.Sampler)
return build_batch_data_loader(
dataset,
sampler,
total_batch_size,
aspect_ratio_grouping=aspect_ratio_grouping,
num_workers=num_workers,
)
def get_config_from_name(cfg, dataset_name):
# adjust config according to dataset
if 'refcoco' in dataset_name:
cfg.update(cfg['REF'])
return cfg
elif 'coco' in dataset_name:
if 'COCO' in cfg.keys():
cfg.update(cfg['COCO'])
return cfg
elif 'ade' in dataset_name:
if 'ADE20K' in cfg.keys():
cfg.update(cfg['ADE20K'])
return cfg
elif 'imagenet' in dataset_name:
if 'IMAGENET' in cfg.keys():
cfg.update(cfg['IMAGENET'])
return cfg
elif 'vlp' in dataset_name:
cfg.update(cfg['VLP'])
return cfg
elif 'sun' in dataset_name:
cfg.update(cfg['SUN'])
return cfg
elif 'object365' in dataset_name:
cfg.update(cfg['OBJECT365'])
return cfg
elif 'scan' in dataset_name:
cfg.update(cfg['SCAN'])
return cfg
elif 'cityscape' in dataset_name:
cfg.update(cfg['CITY'])
return cfg
elif 'bdd' in dataset_name:
cfg.update(cfg['BDD'])
return cfg
else:
assert False, "dataset not support."
def build_eval_dataloader(cfg, ):
dataloaders = []
cfg = copy.deepcopy(cfg)
for dataset_name in cfg['DATASETS']['TEST']:
cfg = get_config_from_name(cfg, dataset_name)
# adjust mapper according to dataset
if dataset_name == 'imagenet_val':
mapper = ImageNetDatasetMapper(cfg, False)
elif dataset_name == 'bdd10k_val_sem_seg':
mapper = BDDSemDatasetMapper(cfg, False)
elif dataset_name in ["vlp_val", "vlp_captioning_val", "vlp_val2017", "vlp_captioning_val2017"]:
mapper = VLPreDatasetMapper(cfg, False, dataset_name)
elif dataset_name in ["scannet_21_val_seg", "scannet_38_val_seg", "scannet_41_val_seg"]:
mapper = ScanNetSegDatasetMapper(cfg, False)
elif dataset_name in ["scannet_21_panoptic_val", 'bdd10k_40_panoptic_val']:
mapper = ScanNetPanoDatasetMapper(cfg, False)
elif 'sun' in dataset_name:
mapper = SunRGBDSegDatasetMapper(cfg, False)
elif 'refcoco' in dataset_name:
mapper = RefCOCODatasetMapper(cfg, False)
else:
mapper = None
dataloaders += [build_detection_test_loader(cfg, dataset_name, mapper=mapper)]
# dataloaders = build_detection_test_loader(cfg, dataset_name, mapper=mapper)
return dataloaders
def build_train_dataloader(cfg, ):
dataset_names = cfg['DATASETS']['TRAIN']
loaders = {}
cfg = copy.deepcopy(cfg)
for dataset_name in dataset_names:
cfg = get_config_from_name(cfg, dataset_name)
mapper_name = cfg['INPUT']['DATASET_MAPPER_NAME']
# Semantic segmentation dataset mapper
if mapper_name == "mask_former_semantic":
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# Panoptic segmentation dataset mapper
elif mapper_name == "mask_former_panoptic": # TODO: Hack for ade training; should add ade name
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
loaders['ade'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# Instance segmentation dataset mapper
elif mapper_name == "mask_former_instance":
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# coco instance segmentation lsj new baseline
elif mapper_name == "coco_instance_lsj":
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# coco panoptic segmentation lsj new baseline
elif mapper_name == "coco_panoptic_lsj":
mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
elif mapper_name == "object365":
mapper = O365InstanceNewBaselineDatasetMapper(cfg, True) # Use lsj instance mapper for o365
loaders['o365'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
elif mapper_name == "vlpretrain":
mapper = VLPreDatasetMapper(cfg, True, dataset_name)
loaders['vlp'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
elif mapper_name == "refcoco":
mapper = RefCOCODatasetMapper(cfg, True)
loaders['ref'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
else:
mapper = None
loaders[dataset_name] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# import ipdb; ipdb.set_trace()
if len(loaders) == 1 and not cfg['LOADER'].get('JOINT', False):
for k, v in loaders.items():
print("number of iterations per epoch: ", v, len(loaders[k]))
return list(loaders.values())[0]
# return loaders.values()['coco']
# return loaders['coco']
else:
return JointLoader(loaders, key_dataset=cfg['LOADER'].get('KEY_DATASET', 'coco'))
def build_evaluator(cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each
builtin dataset. For your own dataset, you can simply create an
evaluator manually in your script and do not have to worry about the
hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg["OUTPUT_DIR"], "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
# semantic segmentation
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
)
# instance segmentation
if evaluator_type == "coco":
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
cfg_model_decoder_test = cfg["MODEL"]["DECODER"]["TEST"]
# panoptic segmentation
if evaluator_type in [
"coco_panoptic_seg",
"ade20k_panoptic_seg",
"cityscapes_panoptic_seg",
"mapillary_vistas_panoptic_seg",
"scannet_panoptic_seg",
"bdd_panoptic_pano"
]:
if cfg_model_decoder_test["PANOPTIC_ON"]:
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
# COCO
if (evaluator_type == "coco_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]) or evaluator_type == "object365_od":
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
if (evaluator_type == "coco_panoptic_seg" and cfg_model_decoder_test["SEMANTIC_ON"]) or evaluator_type == "coco_sem_seg":
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
# Mapillary Vistas
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg_model_decoder_test["SEMANTIC_ON"]:
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
# Cityscapes
if evaluator_type == "cityscapes_instance":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesSemSegEvaluator(dataset_name)
if evaluator_type == "cityscapes_panoptic_seg":
if cfg_model_decoder_test["SEMANTIC_ON"]:
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
if cfg_model_decoder_test["INSTANCE_ON"]:
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
# ADE20K
if evaluator_type == "ade20k_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
# SEGINW
if evaluator_type == "seginw" and cfg_model_decoder_test["INSTANCE_ON"]:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
# LVIS
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, output_dir=output_folder)
# Classification
if evaluator_type == "classification":
evaluator_list.append(ClassificationEvaluator(dataset_name, output_folder))
# Retrieval
if evaluator_type == "retrieval":
evaluator_list.append(RetrievalEvaluator(dataset_name, output_folder, cfg['MODEL']['DECODER']['RETRIEVAL']['ENSEMBLE']))
if evaluator_type == "captioning":
evaluator_list.append(CaptioningEvaluator(dataset_name, output_folder, MetadataCatalog.get(dataset_name).gt_json))
if evaluator_type in ["grounding_refcoco", "grounding_phrasecut"]:
evaluator_list.append(GroundingEvaluator(dataset_name))
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
def build_optimizer(cls, cfg, model):
cfg_solver = cfg['SOLVER']
weight_decay_norm = cfg_solver['WEIGHT_DECAY_NORM']
weight_decay_embed = cfg_solver['WEIGHT_DECAY_EMBED']
weight_decay_bias = cfg_solver.get('WEIGHT_DECAY_BIAS', 0.0)
defaults = {}
defaults["lr"] = cfg_solver['BASE_LR']
defaults["weight_decay"] = cfg_solver['WEIGHT_DECAY']
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
lr_multiplier = cfg['SOLVER']['LR_MULTIPLIER']
# for _module_name in model.module_names:
# # parameters = self.raw_modules[module_name].get_training_parameters()
# # self.optimizers[module_name] = optimizer_class(parameters, **optimizer_parameters)
# # params = []
# # for module_param_name, value in self.raw_modules[module_name].named_parameters(recurse=True):
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
for key, lr_mul in lr_multiplier.items():
if key in "{}.{}".format(module_name, module_param_name):
hyperparams["lr"] = hyperparams["lr"] * lr_mul
if is_main_process():
logger.info("Modify Learning rate of {}: {}".format(
"{}.{}".format(module_name, module_param_name), lr_mul))
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
if "bias" in module_name:
hyperparams["weight_decay"] = weight_decay_bias
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg_solver['CLIP_GRADIENTS']['CLIP_VALUE']
enable = (
cfg_solver['CLIP_GRADIENTS']['ENABLED']
and cfg_solver['CLIP_GRADIENTS']['CLIP_TYPE'] == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg_solver['OPTIMIZER']
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg_solver['BASE_LR'], momentum=cfg_solver['MOMENTUM']
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg_solver['BASE_LR']
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
return optimizer