forked from HXLH50K/U-Net-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
248 lines (208 loc) · 8.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import logging
import os
import os.path as osp
from glob import glob
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from unet import *
from utils.data_vis import plot_img_and_mask
from utils.dataset import BasicDataset
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
dir_img = osp.join("..", "unet_dataset", "images", "test")
dir_mask = osp.join("..", "unet_dataset", "labels", "test")
def predict_img(net,
full_img,
device,
scale_factor=1,
out_threshold=0.5):
net.eval()
img = torch.from_numpy(BasicDataset.preprocess(full_img, scale_factor))
img = img.unsqueeze(0)
img = img.to(device=device, dtype=torch.float32)
with torch.no_grad():
output = net(img)
if net.n_classes > 1:
probs = F.softmax(output, dim=1)
else:
probs = torch.sigmoid(output)
probs = probs.squeeze(0)
# tf = transforms.Compose(
# [
# transforms.ToPILImage(),
# transforms.Resize(full_img.size[1]),
# transforms.ToTensor()
# ]
# )
# probs = tf(probs.cpu())
full_mask = probs.squeeze().cpu().numpy()
return (full_mask > out_threshold)
def get_args():
parser = argparse.ArgumentParser(description='Predict masks from input images',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--model', '-m', default='MODEL.pth',
metavar='FILE',
help="Specify the file in which the model is stored")
parser.add_argument('--viz', '-v', action='store_true',
help="Visualize the images as they are processed",
default=False)
parser.add_argument('--mask-threshold', '-t', type=float,
help="Minimum probability value to consider a mask pixel white",
default=0.5)
parser.add_argument('--scale', '-s', type=float,
help="Scale factor for the input images",
default=1)
parser.add_argument('--model_type', type=str, default='unet',
help="Model which choosed.")
return parser.parse_args()
def get_output_filenames(args):
in_files = args.input
out_files = []
if not args.output:
for f in in_files:
pathsplit = os.path.splitext(f)
out_files.append("{}_OUT{}".format(pathsplit[0], pathsplit[1]))
elif len(in_files) != len(args.output):
logging.error("Input files and output files are not of the same length")
raise SystemExit()
else:
out_files = args.output
return out_files
def caculate_dice(y_true, y_pred, threshold = 0.5, smooth = 0.000001):
y_true = (y_true > 0.5).astype(np.int_)
y_pred = (y_pred > 0.5).astype(np.int_)
return (2. * np.sum(y_true * y_pred)) / (np.sum(y_true) + np.sum(y_pred) + smooth)
def Evaluate(true_mask, pred_mask):
"""
Get the DICE/IOU between each predicted mask and each true mask.
Inputs:
masks_true : array-like
A 2D array of shape (image_height, image_width)
masks_pred : array-like
A 2D array of shape (image_height, image_width)
Returns:
array-like
A 2D array of shape (n_true_masks, n_predicted_masks), where
the element at position (i, j) denotes the dice between the `i`th true
mask and the `j`th predicted mask.
"""
assert true_mask.shape == pred_mask.shape, "Gt and pred must have same shape."
height, width = true_mask.shape
m_true = true_mask.copy().reshape(height * width).T
m_pred = pred_mask.copy().reshape(height * width)
TP = np.dot(m_pred, m_true)
TN = np.dot(1 - m_pred, 1 - m_true)
FP = np.dot(m_pred, 1 - m_true)
FN = np.dot(1 - m_pred, m_true)
dice = 2*TP/(2*TP+FP+FN)
iou = TP/(TP+FP+FN)
precision = TP/(TP+FP)
recall = sensitivity = TP/(TP+FN)
specificity = TN/(FP+TN)
return dice, iou, precision, recall, specificity
# def Evaluate(true_mask, pred_mask):
# """
# Get the DICE/IOU between each predicted mask and each true mask.
# Inputs:
# masks_true : array-like
# A 2D array of shape (image_height, image_width)
# masks_pred : array-like
# A 2D array of shape (image_height, image_width)
# Returns:
# array-like
# A 2D array of shape (n_true_masks, n_predicted_masks), where
# the element at position (i, j) denotes the dice between the `i`th true
# mask and the `j`th predicted mask.
# """
# assert true_mask.shape == pred_mask.shape, "Gt and pred must have same shape."
# masks_true = true_mask[np.newaxis, ...]
# masks_pred = pred_mask[np.newaxis, ...]
# n_true_masks, height, width = masks_true.shape
# n_pred_masks = masks_pred.shape[0]
# m_true = masks_true.copy().reshape(n_true_masks, height * width).T
# m_pred = masks_pred.copy().reshape(n_pred_masks, height * width)
# numerator = np.dot(m_pred, m_true)
# denominator = m_pred.sum(1).reshape(-1, 1) + m_true.sum(0).reshape(1, -1)
# dice = 2*numerator / denominator
# iou = numerator / (denominator - numerator)
# sensitivity = numerator / m_true.sum(0).reshape(1, -1)
# specificity = numerator / m_pred.sum(1).reshape(-1, 1)
# return dice, iou, sensitivity, specificity
def mask_to_image(mask):
return Image.fromarray((mask * 255).astype(np.uint8))
if __name__ == "__main__":
args = get_args()
in_files = sorted(glob(osp.join(dir_img, "**", "*.npy"), recursive=True))
nets = {
"unet": UNet,
"inunet": InUNet,
"attunet": AttU_Net,
"inattunet": InAttU_Net,
"att2uneta": Att2U_NetA,
"att2unetb": Att2U_NetB,
"att2unetc": Att2U_NetC,
}
try:
net_type = nets[args.model_type.lower()]
net = net_type(n_channels=1, n_classes=1, bilinear=True)
except KeyError:
os._exit(0)
logging.info("Loading model {}".format(args.model))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
net.to(device=device)
net.load_state_dict(torch.load(args.model, map_location=device))
logging.info("Model loaded !")
n = len(in_files)
test_res = []
print("main_id\t\t\t\tdice\t\t\tiou\t\t\tprecision\t\tsensitivity/recall\tspecificity")
TN = TP = FP = FN = 0
for i, fn in enumerate(in_files):
main_id = osp.basename(fn).split(".")[0]
logging.info("\nPredicting image {} ...".format(fn))
img = np.load(fn)
pred_mask = predict_img(net=net,
full_img=img,
scale_factor=args.scale,
out_threshold=args.mask_threshold,
device=device).astype(np.int)
true_mask = np.load(fn.replace("images", "labels"))
dice, iou, precision, recall, specificity = Evaluate(true_mask, pred_mask)
print(f"{i+1}/{n}-{main_id}:\t{dice}\t{iou}\t{precision}\t{recall}\t{specificity}")
test_res.append((main_id, dice, iou, precision, recall, specificity))
if dice == 0:
if pred_mask.sum() == 0 and true_mask.sum() != 0:
FN += 1
elif pred_mask.sum() != 0 and true_mask.sum() == 0:
FP += 1
elif pred_mask.sum() == 0 and true_mask.sum() == 0:
TN += 1
else:
TP += 1
if args.viz:
logging.info("Visualizing results for image {}, close to continue ...".format(fn))
plot_img_and_mask(img, mask)
test_res.sort(key = lambda x:x[0])
ids, dice, iou, precision, recall, specificity = zip(*test_res)
dice_max = np.max(dice)
dice_min = np.min(dice)
dice_mean = np.mean(dice)
dice_var = np.var(dice)
print("dice_max: {}, dice_min: {}, dice_mean: {}, dice_var: {}".format(dice_max, dice_min, dice_mean, dice_var))
print(f"bump TP: {TP}, TN: {TN}, FP: {FP}, FN: {FN}")
writer = pd.ExcelWriter(osp.join(osp.dirname(args.model), "test_res.xlsx"))
res = {
"id": ids,
"dice": dice,
"iou": iou,
"precisions": precision,
"sensitivity/recall": recall,
"specificity": specificity,
}
res = pd.DataFrame(res)
res.to_excel(writer, sheet_name="result", index=False)
writer.close()