forked from HXLH50K/U-Net-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
407 lines (366 loc) · 15.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# %%
import argparse
import logging
import os
import os.path as osp
import sys
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from torch.cuda import amp
from torch.nn.modules import activation
from torch.nn.modules.activation import Threshold
from tqdm import tqdm
from eval import eval_net
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, random_split
from torch.utils.data.distributed import DistributedSampler
import utils
import models
from utils.dataset import BasicDataset
# %%
logger = logging.getLogger(__name__)
dir_img = osp.join("..", "unet_dataset", "images", "trainval")
dir_mask = osp.join("..", "unet_dataset", "labels", "trainval")
def is_parallel(model):
return type(model) in (nn.parallel.DataParallel,
nn.parallel.DistributedDataParallel)
def get_args():
parser = argparse.ArgumentParser(
description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-e',
'--epochs',
metavar='E',
type=int,
default=5,
help='Number of epochs',
dest='epochs')
parser.add_argument('-b',
'--batch_size',
metavar='B',
type=int,
nargs='?',
default=1,
help='Batch size',
dest='batchsize')
parser.add_argument('-l',
'--learning_rate',
metavar='LR',
type=float,
nargs='?',
default=0.0001,
help='Learning rate',
dest='lr')
parser.add_argument('-f',
'--load',
dest='load',
type=str,
default=False,
help='Load model from a .pth file')
parser.add_argument('-s',
'--scale',
dest='scale',
type=float,
default=0.5,
help='Downscaling factor of the images')
parser.add_argument('-v',
'--validation',
dest='val',
type=float,
default=0.1,
help='Percent of the data \
that is used as validation (0-100)')
parser.add_argument('-d',
'--device',
default='',
help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--local_rank',
type=int,
default=-1,
help='DDP parameter, do not modify')
parser.add_argument('--model_type',
type=str,
default='unet',
help="Model which choosed.")
parser.add_argument('--split_seed', type=int, default=None, help='')
return parser.parse_args()
def select_device(device='', batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
s = f'UNetHX torch {torch.__version__} '
cpu = device.lower() == 'cpu'
if cpu:
os.environ[
'CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
assert torch.cuda.is_available(
), f'CUDA unavailable, invalid device {device} requested' # check availability
cuda = not cpu and torch.cuda.is_available()
if cuda:
n = torch.cuda.device_count()
if n > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
space = ' ' * len(s)
for i, d in enumerate(device.split(',') if device else range(n)):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
else:
s += 'CPU\n'
logger.info(s) # skip a line
return torch.device('cuda:0' if cuda else 'cpu')
def train_net(model,
device,
epochs=5,
batch_size=1,
lr=0.001,
val_percent=0.1,
save_all_cp=True,
dir_checkpoint='runs',
split_seed=None):
dataset = BasicDataset(dir_img, dir_mask)
n_val = int(len(dataset) *
val_percent) if val_percent < 1 else int(val_percent)
n_train = len(dataset) - n_val
if split_seed:
train, val = random_split(
dataset, [n_train, n_val],
generator=torch.Generator().manual_seed(split_seed))
else:
train, val = random_split(dataset, [n_train, n_val])
if type(model) == nn.parallel.DistributedDataParallel:
train_loader = DataLoader(train,
batch_size=batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
sampler=DistributedSampler(train))
val_loader = DataLoader(val,
batch_size=batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=True,
sampler=DistributedSampler(val))
else:
train_loader = DataLoader(train,
batch_size=batch_size,
shuffle=True,
num_workers=8,
pin_memory=True)
val_loader = DataLoader(val,
batch_size=batch_size,
shuffle=False,
num_workers=8,
pin_memory=True,
drop_last=True)
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_all_cp}
Device: {device.type}
''')
# loss = nn.BCEWithLogitsLoss()
# loss.__name__ = 'BCEWithLogitLoss'
# loss = nn.BCELoss()
# loss.__name__ = 'BCELoss'
loss = utils.losses.NoiseRobustDiceLoss(eps=1e-7, activation='sigmoid')
metrics = [
utils.metrics.Dice(threshold=0.5, activation='sigmoid'),
utils.metrics.Fscore(threshold=None, activation='sigmoid')
]
optimizer = torch.optim.Adam([
dict(params=model.parameters(), lr=lr),
])
train_epoch = utils.train.TrainEpoch(
model,
loss=loss,
metrics=metrics,
optimizer=optimizer,
device=device,
verbose=True,
)
valid_epoch = utils.train.ValidEpoch(
model,
loss=loss,
metrics=metrics,
device=device,
verbose=True,
)
max_score = 0
os.makedirs(dir_checkpoint, exist_ok=True)
for i in range(0, epochs):
print('\nEpoch: {}'.format(i + 1))
train_logs = train_epoch.run(train_loader)
valid_logs = valid_epoch.run(val_loader)
# do something (save model, change lr, etc.)
if max_score < valid_logs['dice_score']:
max_score = valid_logs['dice_score']
torch.save(model, osp.join(dir_checkpoint, 'best_model.pt'))
torch.save(model.state_dict(),
osp.join(dir_checkpoint, 'best_model_dict.pth'))
print('Model saved!')
if save_all_cp:
torch.save(model.state_dict(),
osp.join(dir_checkpoint, f'CP_epoch{i + 1}.pth'))
# writer = SummaryWriter(log_dir=dir_checkpoint)
# global_step = 0
# optimizer = optim.RMSprop(net.parameters(),
# lr=lr,
# weight_decay=1e-8,
# momentum=0.9)
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(
# optimizer, 'min' if net.n_classes > 1 else 'max', patience=2)
# if net.n_classes > 1:
# criterion = nn.CrossEntropyLoss()
# else:
# criterion = nn.BCEWithLogitsLoss()
# for epoch in range(epochs):
# net.train()
# epoch_loss = 0
# with tqdm(total=n_train,
# desc=f'Epoch {epoch + 1}/{epochs}',
# unit='img') as pbar:
# for batch in train_loader:
# imgs = batch['image']
# true_masks = batch['mask']
# assert imgs.shape[1] == net.n_channels, \
# f'Network has been defined with {net.n_channels} input channels, ' \
# f'but loaded images have {imgs.shape[1]} channels. Please check that ' \
# 'the images are loaded correctly.'
# imgs = imgs.to(device=device, dtype=torch.float32)
# mask_type = torch.float32 if net.n_classes == 1 else torch.long
# true_masks = true_masks.to(device=device, dtype=mask_type)
# masks_pred = net(imgs)
# loss = criterion(masks_pred, true_masks)
# epoch_loss += loss.item()
# writer.add_scalar('Loss/train', loss.item(), global_step)
# pbar.set_postfix(**{'loss (batch)': loss.item()})
# optimizer.zero_grad()
# loss.backward()
# # for name, param in net.named_parameters():
# # print(name, param.grad)
# nn.utils.clip_grad_value_(net.parameters(), 0.1)
# optimizer.step()
# pbar.update(imgs.shape[0])
# global_step += 1
# if global_step % (n_train // (10 * batch_size)) == 0:
# for tag, value in net.named_parameters():
# try:
# tag = tag.replace('.', '/')
# writer.add_histogram('weights/' + tag,
# value.data.cpu().numpy(),
# global_step)
# writer.add_histogram('grads/' + tag,
# value.grad.data.cpu().numpy(),
# global_step)
# except AttributeError:
# pass
# val_score = eval_net(net, val_loader, device)
# scheduler.step(val_score)
# writer.add_scalar('learning_rate',
# optimizer.param_groups[0]['lr'],
# global_step)
# if net.n_classes > 1:
# logging.info(
# 'Validation cross entropy: {}'.format(val_score))
# writer.add_scalar('Loss/test', val_score, global_step)
# else:
# logging.info(
# 'Validation Dice Coeff: {}'.format(val_score))
# writer.add_scalar('Dice/test', val_score, global_step)
# writer.add_images('images', imgs, global_step)
# if net.n_classes == 1:
# writer.add_images('masks/true', true_masks,
# global_step)
# writer.add_images('masks/pred',
# torch.sigmoid(masks_pred) > 0.5,
# global_step)
# if save_cp:
# try:
# os.mkdir(dir_checkpoint)
# logging.info('Created checkpoint directory')
# except OSError:
# pass
# torch.save(net.state_dict(),
# osp.join(dir_checkpoint, f'CP_epoch{epoch + 1}.pth'))
# logging.info(f'Checkpoint {epoch + 1} saved !')
# writer.close()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO,
format='%(levelname)s: %(message)s')
args = get_args()
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = select_device(args.device, batch_size=args.batchsize)
logging.info(f'Using device {device}')
import socket
from datetime import datetime
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
comment = f'MT_{args.model_type}_SS_{args.split_seed}_LR_{args.lr}_BS_{args.batchsize}'
dir_checkpoint = osp.join(
".", "checkpoints",
f"{current_time}_{socket.gethostname()}_" + comment)
# Change here to adapt to your data
# n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel
# - For 1 class and background, use n_classes=1
# - For 2 classes, use n_classes=1
# - For N > 2 classes, use n_classes=N
nets = {
# "unet": models.UNet,
# "inunet": InUNet,
# "attunet": AttU_Net,
# "inattunet": InAttU_Net,
# "att2uneta": Att2U_NetA,
# "att2unetb": Att2U_NetB,
# "att2unetc": Att2U_NetC,
# "ecaunet": ECAU_Net,
# "gsaunet": GsAUNet,
# "utnet": U_Transformer,
"ddrnet": models.DualResNet,
"utrans": models.U_Transformer,
}
try:
net_type = nets[args.model_type.lower()]
net = net_type(in_channels=1, classes=1)
except KeyError:
os._exit(0)
net.to(device=device)
# net.apply(weight_init)
cuda = device.type != 'cpu'
# DP mode
if cuda and args.local_rank == -1 and torch.cuda.device_count() > 1:
print(f"DP Use multiple gpus: {args.device}")
net = nn.DataParallel(net)
# DDP mode
if cuda and args.local_rank != -1 and torch.cuda.device_count() > 1:
print(f"DDP Use multiple gpus: {args.device}")
assert torch.cuda.device_count() > args.local_rank
device = torch.device('cuda', args.local_rank)
torch.distributed.init_process_group(backend="nccl")
net = nn.parallel.DistributedDataParallel(net)
net = net.to(device=device)
net = net.module if is_parallel(net) else net
net = net.to(device=device)
# logging.info(
# f'Network:\n'
# f'\t{net.n_channels} input channels\n'
# f'\t{net.n_classes} output channels (classes)\n'
# f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling')
if args.load:
net.load_state_dict(torch.load(args.load, map_location=device))
logging.info(f'Model loaded from {args.load}')
train_net(model=net,
epochs=args.epochs,
batch_size=args.batchsize,
lr=args.lr,
device=device,
val_percent=args.val,
dir_checkpoint=dir_checkpoint,
split_seed=args.split_seed,
save_all_cp=True)
# %%