-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
236 lines (179 loc) · 7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import csv
import keras
import matplotlib.pyplot as plt
import numpy as np
from keras import backend as K
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Flatten, Dropout
from keras.models import Sequential
from sklearn.metrics import roc_curve, precision_recall_curve, auc
from sklearn.model_selection import train_test_split
import image
def read_samples(file_name):
samples = []
with open(file_name, 'r', newline='') as csvfile:
reader = csv.reader(csvfile)
next(reader, None)
for row in reader:
row[1] = int(row[1])
if row[2] == 0.0 and row[3] == 0.0:
next(reader)
samples.append(row)
a, b = divmod(len(samples), 50)
return samples[0:len(samples) - b]
def train_data():
bad_samples_file = "samples/current_model/train_samples.csv"
bad_samples = read_samples(bad_samples_file)
return bad_samples
def test_data():
valid_samples_file = "samples/current_model/test_samples.csv"
samples = read_samples(valid_samples_file)
return samples
def split_data(samples, test_size):
train, test = train_test_split(samples, test_size=test_size)
return train, test
def data_generator(samples, batch_size):
while 1:
for sample_index in range(0, len(samples), batch_size):
x = np.zeros((batch_size, 100, 100, 1), dtype=np.float32)
y = np.zeros((batch_size,))
for index in range(sample_index, sample_index + batch_size):
file_name = samples[index][0]
square = image.load_square_from_file(file_name)
expanded = np.expand_dims(square, axis=2)
x[index - sample_index] = expanded
y[index - sample_index] = samples[index][1]
yield (x, y)
def init_model():
input_shape = (100, 100, 1)
model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),
activation='relu',
input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
return model
class AccuracyHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.acc = []
def on_epoch_end(self, batch, logs={}):
self.acc.append(logs.get('acc'))
def generate_results(y_test, y_score):
fpr, tpr, _ = roc_curve(y_test, y_score)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], 'k--', label='test')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Classification results on train set, AUC = (%0.2f)' % roc_auc)
print('AUC: %f' % roc_auc)
plt.show()
pr, rc, _ = precision_recall_curve(y_test, y_score)
pr_auc = auc(rc, pr)
print('AUC: %f' % pr_auc)
# plt.show()
return roc_auc, pr_auc
def calc_batch_size(batch_len, min_size, max_size):
for size in range(min_size, max_size):
a, b = divmod(batch_len, size)
if b == 0:
return size
def run_metrics_experiment():
r = read_samples("samples/rest_bad_samples.csv")
roc = np.zeros((19, 3), dtype=np.float32)
pr = np.zeros((19, 3), dtype=np.float32)
t_size = []
idx = 0
for test_size in np.arange(0.05, 1, 0.05):
size = round(test_size, 2)
train, test = split_data(r, size)
print("test_part: " + str(size) + " train_size: " + str(len(train)) + " test_size: " + str(len(test)))
history = AccuracyHistory()
train_middle = int(len(train) / 50)
test_middle = int(len(test) / 25)
train_batch_size = calc_batch_size(len(train), int(train_middle - 0.5 * train_middle),
int(train_middle + 0.5 * train_middle))
test_batch_size = calc_batch_size(len(test), int(test_middle - 0.5 * test_middle),
int(test_middle + 0.5 * test_middle))
# train_batch_size = int(len(train) / 50)
# test_batch_size = int(len(test) / 25)
epochs = 5
print(train_batch_size)
print(test_batch_size)
roc_tmp = []
pr_tmp = []
for _ in range(5):
K.clear_session()
model = init_model()
model.fit_generator(data_generator(train, train_batch_size),
steps_per_epoch=train_batch_size,
callbacks=[history],
epochs=epochs)
# model = load_model("samples/model.h5")
scores = model.predict_generator(data_generator(test, test_batch_size),
steps=int(len(test) / test_batch_size))
print(scores)
real = np.zeros((len(test),), dtype=np.float32)
for i in range(0, len(test)):
real[i] = test[i][1]
roc_auc, pr_auc = generate_results(real, scores)
roc_tmp.append(roc_auc)
pr_tmp.append(pr_auc)
roc[idx][0] = np.average(roc_tmp)
roc[idx][1] = np.min(roc_tmp)
roc[idx][2] = np.max(roc_tmp)
pr[idx][0] = np.average(pr_tmp)
pr[idx][1] = np.min(pr_tmp)
pr[idx][2] = np.max(pr_tmp)
t_size.append(test_size)
idx += 1
plt.plot(t_size, roc[:, 0])
plt.fill_between(t_size, roc[:, 1], roc[:, 2], alpha=0.3)
plt.plot(t_size, pr[:, 0])
plt.fill_between(t_size, pr[:, 1], pr[:, 2], alpha=0.5)
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.xlabel("test_part_size")
plt.ylabel("AUC")
plt.show()
def run_default_model():
train = train_data()
test = test_data()
history = AccuracyHistory()
train_batch_size = int(len(train) / 50)
test_batch_size = int(len(test) / 25)
print(train_batch_size)
print(test_batch_size)
epochs = 10
model = init_model()
model.fit_generator(data_generator(train, train_batch_size),
steps_per_epoch=train_batch_size,
callbacks=[history],
epochs=3)
model.save("samples/current_model/model.h5")
# model = load_model("samples/model.h5")
scores = model.predict_generator(data_generator(test, test_batch_size), steps=25)
print(scores)
real = np.zeros((len(test),), dtype=np.float32)
for i in range(0, len(test)):
real[i] = test[i][1]
print(scores)
generate_results(real, scores)
# run_metrics_experiment()
# run_default_model()
# import pydot
# print (pydot.find_graphviz())
from keras.utils import plot_model
model = init_model()
plot_model(model, to_file='model_arch.png', show_shapes=True)