forked from HemanthSai7/PoseControl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
89 lines (77 loc) · 2.82 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import pyttsx3
import math
import cv2
import mediapipe as mp
import time
# Important functions to be used in pose detection
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
# For webcam input:
def pose():
cap = cv2.VideoCapture(0)
with mp_pose.Pose(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as pose:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = pose.process(image)
# Draw the pose annotation on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())
# mp_drawing.plot_landmarks(results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
#convert the landmarks JSON to a list of dictionary
keypoints = [{'X': data.x, 'Y': data.y, 'Z': data.z}
for data in results.pose_landmarks.landmark]
#convert the local variables to global ones
global arc1
arc1 = keypoints[9] # soulder arc
global arc2
arc2 = keypoints[22] # right arc
global arc3
arc3 = keypoints[23] # left arc
global arc4
arc4 = keypoints[24] # hip arc
#To calculate the distance
distance = 0
distance += ((arc1['X']) - (arc4['X']))**2
distance += ((arc1['Y']) - (arc4['Y']))**2
distance += ((arc1['Z']) - (arc4['Z']))**2
result = math.sqrt(distance)
if result < 0.7*0.9829993072752983:
engine = pyttsx3.init()
engine.say('Please sit straight')
engine.runAndWait()
# print(result)
cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
# print(keypoints)
pose()
# def calculatedistance(c1, c4):
# #To calculate the distanceance
# distance = 0
# distance += ((c1['X']) - (c4['X']))**2
# distance += ((c1['Y']) - (c4['Y']))**2
# distance += ((c1['Z']) - (c4['Z']))**2
# result = math.sqrt(distance)
# if result < 0.8*0.9665996894753616:
# engine = pyttsx3.init()
# # time.sleep(5)
# engine.say('Sit straight you moron')
# engine.runAndWait()
# print(result)
# calculatedistanceance(arc1,arc4)