-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoard_CV.py
149 lines (124 loc) · 5.53 KB
/
Board_CV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# -*- coding: utf-8 -*-
#My imports
import Card_CV
import gameState
import Tracked_Cards
#Linear Algebra
import numpy as np
#Image manipulation
from PIL import ImageGrab
import cv2
import time
import sys
#Internal movement and scheduling for timers
import pyautogui
import imutils
#TODO: Going to need a new approach, create a classifier to find cards instead of raw size values. This will be more obtuse and hopefully allow for more clean tracking.
#Block out unused areas of the screen to avoid noise
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
cv2.fillPoly(mask, vertices,400)
masked = cv2.bitwise_and(img, img, mask = mask)
return masked
#Look for lines in the image
#TODO: May not be necessary remove to improve speed
def draw_lines(img, lines):
try:
for line in lines:
coords = line[0]
cv2.line(img, (coords[0], coords[1]), (coords[2],coords[3]), [0,255,0],1)
except:
pass
#Process image
def process_img(im):
#processed = cv2.Canny(im, threshold1 = 200, threshold2 = 300)
#processed = cv2.GaussianBlur(processed, (3,3),0)
#cv2.bitwise_not(im,processed)
lines = cv2.HoughLinesP(im, 1, np.pi/180, 80, 100,10)
draw_lines(im, lines)
return im
#Take region of roi containing a card name and pass it to CVBoard.py to describe card
def findNames(orig,gray, game, tracked,tracker, count):
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
orig = imutils.resize(orig, width = 300)
if orig.any():
cv2.bitwise_not(gray)
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
#blur = cv2.GaussianBlur(tophat, (5,5),5)
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx = 1, dy = 0, ksize = 1)
gradX = np.absolute(gradX)
#Minmax normalize
(minVal,maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX-minVal)/ (maxVal-minVal)))
gradX = gradX.astype('uint8')
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
thresh = cv2.threshold(gradX, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
#locs = []
#for(i, c) in enumerate(cnts):
# (x,y,w,h) = cv2.boundingRect(c) #Consider aspect ratio as a means of better identfying cards
# if(w > 40 and w < 250) and (h > 18 and h < 35):
# locs.append((x - 5,y,w + 10,h + 5))
# tracked.append((x- 5, y, w+ 10, h+ 5))
# if locs and locs not in tracked:
# if count < 10:
# tracker.add(cv2.TrackerKCF_create(),orig,locs[0])
# game.addToHand(Card_CV.addFromBoard(orig,locs,gray)) #Send roi region (should be the name) to be described
# #time.sleep(1)
# locs = []
def findCards(orig, gray, tracked, tracker):
gray = cv2.bilateralFilter(gray, 2, 30,80)
edged = cv2.Canny(gray, 0,150)
(_,cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:10]
for i,c in enumerate(cnts):
(x,y,w,h) = cv2.boundingRect(c)
#if len(cnts) <= 10:#$ and len(approx) < 8:
if(w > 100 and w < 185) and (h > 150 and h < 240):
cur_roi = (x,y,w,h)
cv2.rectangle(orig, (x,y), (x+w, y+h), (255,0,0), 4)
tracked.append((x,y,w,h))
return tracked
def main():
tracked = []
tracker = cv2.MultiTracker()
printscreen = ImageGrab.grab(bbox=(0,50, 1024, 800))
roi_board = cv2.cvtColor(np.array(printscreen), cv2.COLOR_BGR2RGB)
roi_board_gray = cv2.cvtColor(np.array(roi_board), cv2.COLOR_BGR2GRAY)
tracked = findCards(roi_board, roi_board_gray, tracked, tracker)
print(tracked)
#cv2.SelectROIs("tracker",printscreen,tracked)
for item in tracked:
tracker.add(cv2.TrackerKCF_create(),roi_board,item)
while(True):
printscreen = ImageGrab.grab(bbox=(0,50, 1024, 800))
roi_board = cv2.cvtColor(np.array(printscreen), cv2.COLOR_BGR2RGB)
roi_board_gray = cv2.cvtColor(np.array(roi_board), cv2.COLOR_BGR2GRAY)
findCards(roi_board, roi_board_gray, tracked, tracker)
#cv2.SelectROIs("tracker",roi_board,tracked)
tracker.update(roi_board)
for obj in range(len(tracker.getObjects())):
cv2.rectangle(roi_board, tracker.getObjects()[obj], (0,255,0), 4)
cv2.imshow('window', roi_board)
if cv2.waitKey(25) & 0xFF == ord('d'):
game.displayHand()
if cv2.waitKey(50) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
if __name__ == "__main__":
game = gameState.GameState()
#_thread.start_new_thread(main())
main()
### DEPRECATED BUT MIGHT BE USEFUL ###
#vertices = np.array([[100,600],[100,160],[400,160],[400,10],[580,10],[580,160],[1024,160],[1024,450],[750,450],[750,600]])
#roi_board = region_of_interest(np.array(printscreen),[vertices])
#p = process_img(roi_board_gray)
#findCards(roi_board, roi_board_gray, game, tracked,tracker, trackCount)
#ok, boxes = tracker.update(roi_board)
#for newbox in boxes:
# p1 = (int(newbox[0]), int(newbox[1]))
# p2 = (int(newbox[0]) + int(newbox[1]), int(newbox[1] + newbox[3]))
# cv2.rectangle(roi_board, p1,p2,(200,0,0),2)