-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 23.3 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
paste("coeff", var, sep="") <- summary(res.logist)$coefficients[1, 2]
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
(paste("coeff", var, sep="")) <- summary(res.logist)$coefficients[1, 2]
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
(paste("coeff", var, sep="")) <- summary(res.logist)$coefficients[1,2]
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
(paste("coeff", var, sep="")) <- summary(res.logist)$coefficients[2,2]
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
paste("coeff", var, sep="") <- NULL
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
assign(paste("coeff", var, sep=""), summary(res.logist)$coefficients[2,2])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
assign(paste("coeff", var, sep=""), summary(res.logist)$coefficients[1,2])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
assign(paste("coeff", var, sep=""), NULL)
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
assign(paste("coeff", var, sep=""), summary(res.logist)$coefficients[1,2])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
##assign(paste("coeff", var, sep=""), summary(res.logist)$coefficients[1,2])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
assign(paste("coeff", var, sep=""), summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
assign(paste("c", var, sep=""), summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
##assign(paste("c", var, sep=""), summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
assign(paste("c", var, sep=""), NULL)
})
cfs6050
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
assign(paste("c", as.string(var), sep=""), summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
assign(paste("c", as_string(var), sep=""), summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
assign(paste("c", as.character(var), sep=""), summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist),
var <- summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
##var <- summary(res.logist)$coefficients[2,1])
})
lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
results < - lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
results <- lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
table$results <- results
results <- lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
results <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
results[,1] <- lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
results[,1] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab[,1] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab <- data.table(C1 = c(1:9), C2 = NULL)
resultstab <- data.table(C1 = c(1:9), C2 = NA)
View(resultstab)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
View(resultstab)
resultstab <- data.table(C1 = c((1:9) x 10 - 35, C2 = NA)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab <- data.table(C1 = c((1:9) x 10 - 35, C2 = NA)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab <- data.table(C1 = c((1:9) x 10 - 35, C2 = NA))
resultstab <- data.table(C1 = c(1:9 x 10 - 35, C2 = NA))
resultstab <- data.table(C1 = c(1:9), C2 = NA))
resultstab <- data.table(C1 = c1:9, C2 = NA)
resultstab <- data.table(C1 = 1:9, C2 = NA)
View(resultstab)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab[,1] <- resultstab[,1] * 10
resultstab[,1] <- resultstab[,1] * 10 - 35
View(resultstab)
resultstab[,1] <- (resultstab[,1] * 10) - 35
View(resultstab)
resultstab[,1] <- (resultstab[,1] * 10)
View(resultstab)
resultstab <- data.table(C1 = as.numeric(1:9), C2 = NA)
resultstab[,1] <- (resultstab[,1] * 10)
View(resultstab)
resultstab[,1] <- (resultstab[,1] * 10) - 35
View(resultstab)
resultstab <- data.table(C1 = as.numeric(1:9), C2 = NA)
View(resultstab)
resultstab[,1] <- (resultstab[,1] * 10)
View(resultstab)
resultstab[,1] <- (resultstab[,1] - 35
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab[,1] <- resultstab[,1] - 35
View(dfplot2)
View(resultstab)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
View(resultstab)
resultstab <- data.table(C1 = as.numeric(1:9), C2 = NA)
resultstab[,1] <- (resultstab[,1] * 10) - 35
View(resultstab)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab <- data.table(C1 = as.numeric(1:9) * 10 - 35, C2 = NA)
View(resultstab)
ggplot(data = resultstab) +
geom_point(aes(x = resultstab[,1], y = resultstab[,2]))
View(resultstab)
ggplot(data = resultstab) +
geom_point(aes(x = C1, y = C2))
resultstab <- data.table(C1 = as.numeric(1:9) * 10 - 35, C2 = NA)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
ggplot(data = resultstab) +
geom_point(aes(x = C1, y = C2))
resultstab <- data.table(C1 = as.numeric(1:9) * 10 - 35, C2 = NA)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
View(resultstab)
resultstab$C1 <- as.numeric(resultstab$C1)
resultstab$C1 <- as.numeric(resultstab$C1)
resultstab$C2 <- as.numeric(resultstab$C2)
ggplot(data = resultstab) +
geom_point(aes(x = C1, y = C2))
describe(statsdata$full_score2)
statsdata$fscore0.10 <- ifelse(statsdata$full_scoretraj > 0 & statsdata$full_scoretraj <= 10, 1, 0)
statsdata$fscore10.20 <- ifelse(statsdata$full_scoretraj > 10 & statsdata$full_scoretraj <= 20, 1, 0)
statsdata$fscore20.30 <- ifelse(statsdata$full_scoretraj > 20 & statsdata$full_scoretraj <= 30, 1, 0)
statsdata$fscore30.40 <- ifelse(statsdata$full_scoretraj > 30 & statsdata$full_scoretraj <= 40, 1, 0)
statsdata$fscore40.50 <- ifelse(statsdata$full_scoretraj > 40 & statsdata$full_scoretraj <= 50, 1, 0)
statsdata$fscore50.60 <- ifelse(statsdata$full_scoretraj > 50 & statsdata$full_scoretraj <= 60, 1, 0)
resultstab2 <- data.table(C1 = as.numeric(1:6) * 10 - 5, C2 = NA)
resultstab2[,2] <- c(lapply(c("fscore0.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab2$C1 <- as.numeric(resultstab2$C1)
resultstab2$C2 <- as.numeric(resultstab2$C2)
ggplot(data = resultstab2) +
geom_point(aes(x = C1, y = C2))
resultstab2 <- data.table(C1 = as.numeric(1:6) * 10 - 5, C2 = NA)
View(resultstab2)
resultstab2[,2] <- c(lapply(c("fscore0.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab <- data.table(C1 = as.numeric(1:9) * 10 - 35, C2 = NA)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab$C1 <- as.numeric(resultstab$C1)
resultstab$C2 <- as.numeric(resultstab$C2)
ggplot(data = resultstab) +
geom_point(aes(x = C1, y = C2))
resultstab2[,2] <- lapply(c("fscore0.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
lapply(c("fscore0.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
lapply(c("fscore0.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
##var <- summary(res.logist)$coefficients[2,1]
})
statsdata$fscore0.10 <- ifelse(statsdata$full_scoretraj > 0 & statsdata$full_scoretraj <= 10, 1, 0)
statsdata$fscore10.20 <- ifelse(statsdata$full_scoretraj > 10 & statsdata$full_scoretraj <= 20, 1, 0)
statsdata$fscore20.30 <- ifelse(statsdata$full_scoretraj > 20 & statsdata$full_scoretraj <= 30, 1, 0)
statsdata$fscore30.40 <- ifelse(statsdata$full_scoretraj > 30 & statsdata$full_scoretraj <= 40, 1, 0)
statsdata$fscore40.50 <- ifelse(statsdata$full_scoretraj > 40 & statsdata$full_scoretraj <= 50, 1, 0)
statsdata$fscore50.60 <- ifelse(statsdata$full_scoretraj > 50 & statsdata$full_scoretraj <= 60, 1, 0)
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
##var <- summary(res.logist)$coefficients[2,1]
})
lapply(c("fscore0.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
##var <- summary(res.logist)$coefficients[2,1]
})
View(table)
View(table)
library(tidyverse)
library(haven)
library(Hmisc)
library(dplyr)
library(readr)
library(plyr)
library(lubridate)
library(openxlsx)
library(data.table)
library(tidyselect)
setwd("/Users/jenniferhunter/Documents/SH PhD Project")
statsdata <- read_csv("Data/trajectories.csv")
## ======
## Box plot trajectories divided by sepsis category
## ======
dfplot2 <- statsdata %>% select(full_scoretraj, partABG_scoretraj, part_scoretraj, sepsis)
dfmelt2 <- melt(dfplot2, id=c("sepsis"))
dfmelt2$sepsisfactor <- ifelse(dfmelt2$sepsis < 3 | is.na(dfmelt2$sepsis), 0, 1)
describe(dfmelt2$sepsis)
dfmelt2$sepsisfactor <- as.factor(dfmelt2$sepsisfactor)
ggplot(data = dfmelt2) +
geom_boxplot(aes(x = variable, y = value, color = sepsisfactor))
statsdata$sepsisfactor <- ifelse(statsdata$sepsis < 3 | is.na(statsdata$sepsis), 0, 1)
clipdata <- statsdata %>% filter(clipfull == 1)
t.test(statsdata$full_scoretraj[statsdata$sepsisfactor == 1], statsdata$full_scoretraj[statsdata$sepsisfactor == 0], paired = FALSE)
t.test(statsdata$scale_fulltraj[statsdata$sepsisfactor == 1], statsdata$scale_fulltraj[statsdata$sepsisfactor == 0], paired = FALSE)
t.test(clipdata$full_scoretraj[clipdata$sepsisfactor == 1], clipdata$full_scoretraj[clipdata$sepsisfactor == 0], paired = FALSE)
t.test(clipdata$scale_fulltraj[clipdata$sepsisfactor == 1], clipdata$scale_fulltraj[clipdata$sepsisfactor == 0], paired = FALSE)
## statistically significant difference in mortality in sepsis and non sepsis in ICU and at 28 days
t.test(statsdata$dead28[statsdata$sepsisfactor == 1], statsdata$dead28[statsdata$sepsisfactor == 0], paired = FALSE)
t.test(statsdata$dead_icu[statsdata$sepsisfactor == 1], statsdata$dead_icu[statsdata$sepsisfactor == 0], paired = FALSE)
clipdata <- filter(statsdata, clipfull == 1)
ggplot(data = clipdata[clipdata$scalef]) +
geom_point(aes(x = clipdata$scale_fulltraj, y = clipdata$scalescorefull2))
ggplot(data = statsdata) +
geom_point(aes(x = statsdata$partABG_scoretraj, y = statsdata$partABG_score2))
ggplot(data = statsdata) +
geom_point(aes(x = statsdata$part_scoretraj, y = statsdata$part_score2))
lapply(c("sepsisfactor","full_scoretraj","full_score1","full_score2", "age"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = clipdata, family = binomial)
summary(res.logist)
})
summary(multvar1)
multvar1 <- glm(dead28 ~ sepsisfactor + scale_fulltraj + scalescorefull2 + scalescorefull1 + age, data = clipdata, family = binomial(link = "logit"))
summary(multvar1)
statsdata$fs6050 <- ifelse(statsdata$full_scoretraj > -60 & statsdata$full_scoretraj <= -50, 1, 0)
statsdata$fs5040 <- ifelse(statsdata$full_scoretraj > -50 & statsdata$full_scoretraj <= -40, 1, 0)
statsdata$fs4030 <- ifelse(statsdata$full_scoretraj > -40 & statsdata$full_scoretraj <= -30, 1, 0)
statsdata$fs3020 <- ifelse(statsdata$full_scoretraj > -30 & statsdata$full_scoretraj <= -20, 1, 0)
statsdata$fs2010 <- ifelse(statsdata$full_scoretraj > -20 & statsdata$full_scoretraj <= -10, 1, 0)
statsdata$fs1000 <- ifelse(statsdata$full_scoretraj > -10 & statsdata$full_scoretraj <= 0, 1, 0)
statsdata$fs0010 <- ifelse(statsdata$full_scoretraj > 0 & statsdata$full_scoretraj <= 10, 1, 0)
statsdata$fs1020 <- ifelse(statsdata$full_scoretraj > 10 & statsdata$full_scoretraj <= 20, 1, 0)
statsdata$fs2030 <- ifelse(statsdata$full_scoretraj > 20 & statsdata$full_scoretraj <= 30, 1, 0)
resultstab <- data.table(C1 = as.numeric(1:9) * 10 - 35, C2 = NA)
resultstab[,2] <- c(lapply(c("fs6050","fs5040","fs4030","fs3020", "fs2010","fs1000", "fs0010", "fs1020", "fs2030"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
}))
resultstab$C1 <- as.numeric(resultstab$C1)
resultstab$C2 <- as.numeric(resultstab$C2)
ggplot(data = resultstab) +
geom_point(aes(x = C1, y = C2))
statsdata$fscore00.10 <- ifelse(statsdata$full_scoretraj > 0 & statsdata$full_scoretraj <= 10, 1, 0)
statsdata$fscore10.20 <- ifelse(statsdata$full_scoretraj > 10 & statsdata$full_scoretraj <= 20, 1, 0)
statsdata$fscore20.30 <- ifelse(statsdata$full_scoretraj > 20 & statsdata$full_scoretraj <= 30, 1, 0)
statsdata$fscore30.40 <- ifelse(statsdata$full_scoretraj > 30 & statsdata$full_scoretraj <= 40, 1, 0)
statsdata$fscore40.50 <- ifelse(statsdata$full_scoretraj > 40 & statsdata$full_scoretraj <= 50, 1, 0)
statsdata$fscore50.60 <- ifelse(statsdata$full_scoretraj > 50 & statsdata$full_scoretraj <= 60, 1, 0)
lapply(c("fscore00.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var2) {
formula <- as.formula(paste("dead28 ~", var2))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
##var <- summary(res.logist)$coefficients[2,1]
})
lapply(c("fscore00.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var2) {
formula <- as.formula(paste("dead28 ~", var2))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
resultstab2 <- data.table(C1 = as.numeric(1:6) * 10 - 5, C2 = NA)
View(resultstab2)
resultstab2[,2] <- lapply(c("fscore0.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
resultstab2[,2] <- lapply(c("fscore00.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
apply(c("fscore00.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})
apply(c("fscore00.10","fscore10.20","fscore20.30","fscore30.40", "fscore40.50","fscore50.60"),
function(var) {
formula <- as.formula(paste("dead28 ~", var))
res.logist <- glm(formula, data = statsdata, family = binomial)
summary(res.logist)
var <- summary(res.logist)$coefficients[2,1]
})