forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 1
/
machine_pwm.c
628 lines (569 loc) · 21.8 KB
/
machine_pwm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2021 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "modmachine.h"
#include "pin.h"
#include "fsl_clock.h"
#include "fsl_iomuxc.h"
#include "hal/pwm_backport.h"
#define PWM_MIDDLE (0)
#define PWM_BEGIN (1)
#define PWM_END (2)
#define PWM_CHANNEL1 (1)
#define PWM_CHANNEL2 (2)
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
PWM_Type *instance;
bool is_flexpwm;
uint8_t complementary;
uint8_t module;
uint8_t submodule;
uint8_t channel1;
uint8_t channel2;
uint8_t invert;
bool sync;
uint32_t freq;
int16_t prescale;
uint16_t duty_u16;
uint32_t duty_ns;
uint16_t center;
uint32_t deadtime;
bool output_enable_1;
bool output_enable_2;
uint8_t xor;
bool is_init;
} machine_pwm_obj_t;
static char channel_char[] = {'B', 'A', 'X' };
static char *ERRMSG_FREQ = "PWM frequency too low";
static char *ERRMSG_INIT = "PWM set-up failed";
static char *ERRMSG_VALUE = "value larger than period";
STATIC void machine_pwm_start(machine_pwm_obj_t *self);
STATIC void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->is_flexpwm) {
mp_printf(print, "<FLEXPWM module=%u submodule=%u ", self->module, self->submodule);
if (self->complementary) {
mp_printf(print, "channel=%c/%c", channel_char[self->channel1], channel_char[self->channel2]);
} else {
mp_printf(print, "channel=%c", channel_char[self->channel1]);
}
if (self->duty_ns != 0) {
mp_printf(print, " duty_ns=%u", self->duty_ns);
} else {
mp_printf(print, " duty_u16=%u", self->duty_u16);
}
mp_printf(print, " freq=%u center=%u, deadtime=%u, sync=%u>",
self->freq, self->center, self->deadtime, self->sync);
#ifdef FSL_FEATURE_SOC_TMR_COUNT
} else {
mp_printf(print, "<QTMR_PWM module=%u channel=%u freq1=%u ",
self->module, self->channel1, self->freq);
if (self->duty_ns != 0) {
mp_printf(print, "duty_ns=%u>", self->duty_ns);
} else {
mp_printf(print, "duty_u16=%u>", self->duty_u16);
}
#endif
}
}
// Utility functions for decoding and convertings
//
STATIC uint32_t duty_ns_to_duty_u16(uint32_t freq, uint32_t duty_ns) {
uint64_t duty = (uint64_t)duty_ns * freq * PWM_FULL_SCALE / 1000000000ULL;
if (duty >= PWM_FULL_SCALE) {
mp_raise_ValueError(MP_ERROR_TEXT(ERRMSG_VALUE));
}
return (uint32_t)duty;
}
STATIC uint8_t module_decode(char channel) {
switch (channel) {
case '0':
return kPWM_Module_0;
case '1':
return kPWM_Module_1;
case '2':
return kPWM_Module_2;
case '3':
return kPWM_Module_3;
default:
return kPWM_Module_1;
}
}
STATIC uint8_t channel_decode(char channel) {
switch (channel) {
case 'A':
return kPWM_PwmA;
case 'B':
return kPWM_PwmB;
case 'X':
return kPWM_PwmX;
default:
return kPWM_PwmA;
}
}
// decode the AF objects module and Port numer. Returns NULL if it is not a FLEXPWM object
STATIC const machine_pin_af_obj_t *af_name_decode_flexpwm(const machine_pin_af_obj_t *af_obj,
uint8_t *module, uint8_t *submodule, uint8_t *channel) {
const char *str;
size_t len;
str = (char *)qstr_data(af_obj->name, &len);
// test for the name starting with FLEXPWM
if (len < 15 || strncmp(str, "FLEXPWM", 7) != 0) {
return NULL;
}
// Get module, submodule and channel from the name, e.g. FLEXPWM1_PWM0_A
*module = str[7] - '0';
*submodule = module_decode(str[12]);
*channel = channel_decode(str[14]);
return af_obj;
}
#ifdef FSL_FEATURE_SOC_TMR_COUNT
STATIC uint8_t qtmr_decode(char channel) {
switch (channel) {
case '0':
return kQTMR_Channel_0;
case '1':
return kQTMR_Channel_1;
case '2':
return kQTMR_Channel_2;
case '3':
return kQTMR_Channel_3;
default:
return kPWM_Module_1;
}
}
// decode the AF objects module and Port numer. Returns NULL if it is not a QTMR object
STATIC const machine_pin_af_obj_t *af_name_decode_qtmr(const machine_pin_af_obj_t *af_obj, uint8_t *module, uint8_t *channel) {
const char *str;
size_t len;
str = (char *)qstr_data(af_obj->name, &len);
// test for the name starting with TMR
if (len < 11 || strncmp(str, "TMR", 3) != 0) {
return NULL;
}
// Get module, submodule and channel from the name, e.g. FLEXPWM1_PWM0_A
*module = str[3] - '0';
*channel = qtmr_decode(str[10]);
return af_obj;
}
#endif
STATIC bool is_board_pin(const machine_pin_obj_t *pin) {
for (int i = 0; i < num_board_pins; i++) {
if (pin == machine_pin_board_pins[i]) {
return true;
}
}
return false;
}
// Functions for configuring the PWM Device
//
STATIC int calc_prescaler(uint32_t clock, uint32_t freq) {
float temp = (float)clock / (float)PWM_FULL_SCALE / (float)freq;
for (int prescale = 0; prescale < 8; prescale++, temp /= 2) {
if (temp <= 1) {
return prescale;
}
}
// Frequency too low, cannot scale down.
return -1;
}
STATIC void configure_flexpwm(machine_pwm_obj_t *self) {
pwm_signal_param_u16_t pwmSignal;
// Initialize PWM module.
#if defined(MIMXRT117x_SERIES)
uint32_t pwmSourceClockInHz = CLOCK_GetRootClockFreq(kCLOCK_Root_Bus);
#else
uint32_t pwmSourceClockInHz = CLOCK_GetFreq(kCLOCK_IpgClk);
#endif
int prescale = calc_prescaler(pwmSourceClockInHz, self->freq);
if (prescale < 0) {
mp_raise_ValueError(MP_ERROR_TEXT(ERRMSG_FREQ));
}
if (self->prescale != prescale || self->is_init == false) {
pwm_config_t pwmConfig;
PWM_GetDefaultConfig(&pwmConfig);
self->prescale = prescale;
pwmConfig.prescale = prescale;
pwmConfig.reloadLogic = kPWM_ReloadPwmFullCycle;
if (self->complementary) {
pwmConfig.pairOperation = self->channel1 == kPWM_PwmA ? kPWM_ComplementaryPwmA : kPWM_ComplementaryPwmB;
} else {
pwmConfig.pairOperation = kPWM_Independent;
}
pwmConfig.clockSource = kPWM_BusClock;
pwmConfig.enableWait = false;
pwmConfig.initializationControl = self->sync ? kPWM_Initialize_MasterSync : kPWM_Initialize_LocalSync;
if (PWM_Init(self->instance, self->submodule, &pwmConfig) == kStatus_Fail) {
mp_raise_ValueError(MP_ERROR_TEXT(ERRMSG_INIT));
}
}
// Disable the fault detect function to avoid using the xbara
PWM_SetupFaultDisableMap(self->instance, self->submodule, self->channel1, kPWM_faultchannel_0, 0);
PWM_SetupFaultDisableMap(self->instance, self->submodule, self->channel1, kPWM_faultchannel_1, 0);
if (self->complementary) {
PWM_SetupFaultDisableMap(self->instance, self->submodule, self->channel2, kPWM_faultchannel_0, 0);
PWM_SetupFaultDisableMap(self->instance, self->submodule, self->channel2, kPWM_faultchannel_1, 0);
}
if (self->channel1 != kPWM_PwmX) { // Only for A/B channels
// Initialize the channel parameters
pwmSignal.pwmChannel = self->channel1;
pwmSignal.level = (self->invert & PWM_CHANNEL1) ? kPWM_LowTrue : kPWM_HighTrue;
pwmSignal.dutyCycle_u16 = self->duty_u16;
pwmSignal.Center_u16 = self->center;
pwmSignal.deadtimeValue = ((uint64_t)pwmSourceClockInHz * self->deadtime) / 1000000000ULL;
PWM_SetupPwm_u16(self->instance, self->submodule, &pwmSignal, self->freq,
pwmSourceClockInHz, self->output_enable_1);
if (self->complementary) {
// Initialize the second channel of the pair.
pwmSignal.pwmChannel = self->channel2;
pwmSignal.level = (self->invert & PWM_CHANNEL2) ? kPWM_LowTrue : kPWM_HighTrue;
PWM_SetupPwm_u16(self->instance, self->submodule, &pwmSignal, self->freq,
pwmSourceClockInHz, self->output_enable_2);
}
if (self->xor == 1) {
// Set the DBLEN bit for A, B = A ^ B
self->instance->SM[self->submodule].CTRL &= ~PWM_CTRL_SPLIT_MASK;
self->instance->SM[self->submodule].CTRL |= PWM_CTRL_DBLEN_MASK;
} else if (self->xor == 2) {
// Set the DBLEN and SPLIT bits for A, B = A ^ B
self->instance->SM[self->submodule].CTRL |= PWM_CTRL_DBLEN_MASK | PWM_CTRL_SPLIT_MASK;
} else {
self->instance->SM[self->submodule].CTRL &= ~(PWM_CTRL_DBLEN_MASK | PWM_CTRL_SPLIT_MASK);
}
} else {
PWM_SetupPwmx_u16(self->instance, self->submodule, self->freq, self->duty_u16,
self->invert, pwmSourceClockInHz);
if (self->xor) {
// Set the DBLX bit for X = A ^ B
self->instance->SM[self->submodule].CTRL |= PWM_CTRL_DBLX_MASK;
} else {
self->instance->SM[self->submodule].CTRL &= ~PWM_CTRL_DBLX_MASK;
}
}
// Set the load okay bit for the submodules
PWM_SetPwmLdok(self->instance, 1 << self->submodule, true);
// Start the PWM generation from the Submodules
PWM_StartTimer(self->instance, 1 << self->submodule);
}
#ifdef FSL_FEATURE_SOC_TMR_COUNT
STATIC void configure_qtmr(machine_pwm_obj_t *self) {
qtmr_config_t qtmrConfig;
int prescale;
#if defined(MIMXRT117x_SERIES)
uint32_t pwmSourceClockInHz = CLOCK_GetRootClockFreq(kCLOCK_Root_Bus);
#else
uint32_t pwmSourceClockInHz = CLOCK_GetFreq(kCLOCK_IpgClk);
#endif
TMR_Type *instance = (TMR_Type *)self->instance;
prescale = calc_prescaler(pwmSourceClockInHz, self->freq);
if (prescale < 0) {
mp_raise_ValueError(MP_ERROR_TEXT(ERRMSG_FREQ));
}
if (prescale != self->prescale) {
QTMR_GetDefaultConfig(&qtmrConfig);
qtmrConfig.primarySource = prescale + kQTMR_ClockDivide_1;
QTMR_Init(instance, self->channel1, &qtmrConfig);
self->prescale = prescale;
}
// Set up the PWM channel
if (QTMR_SetupPwm_u16(instance, self->channel1, self->freq, self->duty_u16,
self->invert, pwmSourceClockInHz / (1 << prescale), self->is_init) == kStatus_Fail) {
mp_raise_ValueError(MP_ERROR_TEXT(ERRMSG_INIT));
}
// Start the output
QTMR_StartTimer(instance, self->channel1, kQTMR_PriSrcRiseEdge);
}
#endif // FSL_FEATURE_SOC_TMR_COUNT
STATIC void configure_pwm(machine_pwm_obj_t *self) {
// Set the clock frequencies
// Freq range is 15Hz to ~ 3 MHz.
static bool set_frequency = true;
// set the frequency only once
if (set_frequency) {
#if !defined(MIMXRT117x_SERIES)
CLOCK_SetDiv(kCLOCK_IpgDiv, 0x3); // Set IPG PODF to 3, divide by 4
#endif
set_frequency = false;
}
if (self->duty_ns != 0) {
self->duty_u16 = duty_ns_to_duty_u16(self->freq, self->duty_ns);
}
if (self->is_flexpwm) {
configure_flexpwm(self);
#ifdef FSL_FEATURE_SOC_TMR_COUNT
} else {
configure_qtmr(self);
#endif
}
}
// Micropython API functions
//
STATIC void mp_machine_pwm_init_helper(machine_pwm_obj_t *self,
size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_freq, ARG_duty_u16, ARG_duty_ns, ARG_center, ARG_align,
ARG_invert, ARG_sync, ARG_xor, ARG_deadtime };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_duty_u16, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_duty_ns, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_center, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_align, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1}},
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1}},
{ MP_QSTR_sync, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1}},
{ MP_QSTR_xor, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1}},
{ MP_QSTR_deadtime, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1}},
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if ((n_args + kw_args->used) > 0 || self->is_init == false) {
// Maybe change PWM timer
if (args[ARG_freq].u_int > 0) {
self->freq = args[ARG_freq].u_int;
}
// Set duty_u16 cycle?
uint32_t duty = args[ARG_duty_u16].u_int;
if (duty != 0) {
if (duty >= PWM_FULL_SCALE) {
mp_raise_ValueError(MP_ERROR_TEXT(ERRMSG_VALUE));
}
self->duty_u16 = duty;
self->duty_ns = 0;
}
// Set duty_ns value?
duty = args[ARG_duty_ns].u_int;
if (duty != 0) {
self->duty_ns = duty;
self->duty_u16 = duty_ns_to_duty_u16(self->freq, self->duty_ns);
}
// Set center value?
int32_t center = args[ARG_center].u_int;
if (center >= 0) {
if (center >= PWM_FULL_SCALE) {
mp_raise_ValueError(MP_ERROR_TEXT(ERRMSG_VALUE));
}
self->center = center;
} else { // Use alignment setting shortcut
if (args[ARG_align].u_int >= 0) {
uint8_t align = args[ARG_align].u_int & 3; // limit to 0..3
if (align == PWM_BEGIN) {
self->center = self->duty_u16 / 2;
} else if (align == PWM_END) {
self->center = PWM_FULL_SCALE - self->duty_u16 / 2;
} else {
self->center = 32768; // Default value: mid.
}
}
}
if (args[ARG_invert].u_int >= 0) {
self->invert = args[ARG_invert].u_int & (PWM_CHANNEL1 | PWM_CHANNEL2);
}
if (args[ARG_sync].u_int >= 0) {
self->sync = args[ARG_sync].u_int != false && self->submodule != 0;
}
if (args[ARG_xor].u_int >= 0) {
self->xor = args[ARG_xor].u_int & 0x03;
}
if (args[ARG_deadtime].u_int >= 0) {
self->deadtime = args[ARG_deadtime].u_int;
}
configure_pwm(self);
self->is_init = true;
} else {
machine_pwm_start(self);
}
}
// PWM(pin | pin-tuple, freq, [args])
STATIC mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// Check number of arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
mp_obj_t *pins;
const machine_pin_obj_t *pin1;
const machine_pin_obj_t *pin2;
// Get referred Pin object(s)
if (mp_obj_is_type(args[0], &mp_type_tuple)) {
mp_obj_get_array_fixed_n(args[0], 2, &pins);
pin1 = pin_find(pins[0]);
pin2 = pin_find(pins[1]);
} else {
pin1 = pin_find(args[0]);
pin2 = NULL;
}
// Check whether it supports PWM and decode submodule & channel
const machine_pin_af_obj_t *af_obj1 = NULL;
uint8_t submodule1;
uint8_t channel1;
const machine_pin_af_obj_t *af_obj2 = NULL;
uint8_t submodule2;
uint8_t channel2;
uint8_t module;
bool is_flexpwm = false;
for (int i = 0; i < pin1->af_list_len; ++i) {
af_obj1 = af_name_decode_flexpwm(&(pin1->af_list[i]), &module, &submodule1, &channel1);
if (af_obj1 != NULL) {
break;
}
}
if (pin2 != NULL) {
for (int i = 0; i < pin1->af_list_len; ++i) {
af_obj2 = af_name_decode_flexpwm(&(pin2->af_list[i]), &module, &submodule2, &channel2);
if (af_obj2 != NULL) {
break;
}
}
}
if (af_obj1 == NULL) {
submodule1 = 0;
#ifdef FSL_FEATURE_SOC_TMR_COUNT
// Check for QTimer support
if (is_board_pin(pin1)) {
for (int i = 0; i < pin1->af_list_len; ++i) {
af_obj1 = af_name_decode_qtmr(&(pin1->af_list[i]), &module, &channel1);
if (af_obj1 != NULL) {
break;
}
}
}
#endif
if (af_obj1 == NULL) {
mp_raise_ValueError(MP_ERROR_TEXT("the requested Pin(s) does not support PWM"));
}
} else {
// is flexpwm, check for instance match
is_flexpwm = true;
if (pin2 != NULL && af_obj1->instance != af_obj2->instance && submodule1 != submodule2) {
mp_raise_ValueError(MP_ERROR_TEXT("the pins must be a A/B pair of a submodule"));
}
}
// Create and populate the PWM object.
machine_pwm_obj_t *self = mp_obj_malloc(machine_pwm_obj_t, &machine_pwm_type);
self->is_flexpwm = is_flexpwm;
self->instance = af_obj1->instance;
self->module = module;
self->submodule = submodule1;
self->channel1 = channel1;
self->invert = 0;
self->freq = 1000;
self->prescale = -1;
self->duty_u16 = 32768;
self->duty_ns = 0;
self->center = 32768;
self->output_enable_1 = is_board_pin(pin1);
self->sync = false;
self->deadtime = 0;
self->xor = 0;
self->is_init = false;
// Initialize the Pin(s).
CLOCK_EnableClock(kCLOCK_Iomuxc); // just in case it was not set yet
IOMUXC_SetPinMux(pin1->muxRegister, af_obj1->af_mode, af_obj1->input_register, af_obj1->input_daisy,
pin1->configRegister, 0U);
IOMUXC_SetPinConfig(pin1->muxRegister, af_obj1->af_mode, af_obj1->input_register, af_obj1->input_daisy,
pin1->configRegister, pin_generate_config(PIN_PULL_DISABLED, PIN_MODE_OUT, PIN_DRIVE_5, pin1->configRegister));
// Settings for the second pin, if given.
if (pin2 != NULL && pin2 != pin1) {
self->complementary = 1;
self->channel2 = channel2;
self->output_enable_2 = is_board_pin(pin2);
// Initialize the Pin(s)
IOMUXC_SetPinMux(pin2->muxRegister, af_obj2->af_mode, af_obj2->input_register, af_obj2->input_daisy,
pin2->configRegister, 0U);
IOMUXC_SetPinConfig(pin2->muxRegister, af_obj2->af_mode, af_obj2->input_register, af_obj2->input_daisy,
pin2->configRegister, pin_generate_config(PIN_PULL_DISABLED, PIN_MODE_OUT, PIN_DRIVE_5, pin2->configRegister));
} else {
self->complementary = 0;
}
// Process the remaining parameters.
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_pwm_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
// Disable all PWM devices. Called on soft reset
void machine_pwm_deinit_all(void) {
static PWM_Type *const pwm_bases[] = PWM_BASE_PTRS;
for (int i = 1; i < ARRAY_SIZE(pwm_bases); i++) {
PWM_StopTimer(pwm_bases[i], 0x0f); // Stop all submodules
pwm_bases[i]->OUTEN = 0; // Disable ouput on all submodules, all channels
}
#ifdef FSL_FEATURE_SOC_TMR_COUNT
static TMR_Type *const tmr_bases[] = TMR_BASE_PTRS;
for (int i = 1; i < ARRAY_SIZE(tmr_bases); i++) {
for (int j = 0; j < 4; j++) {
QTMR_StopTimer(tmr_bases[i], j); // Stop all timers
}
}
#endif
}
STATIC void machine_pwm_start(machine_pwm_obj_t *self) {
if (self->is_flexpwm) {
PWM_StartTimer(self->instance, 1 << self->submodule);
#ifdef FSL_FEATURE_SOC_TMR_COUNT
} else {
QTMR_StartTimer((TMR_Type *)self->instance, self->channel1, kQTMR_PriSrcRiseEdge);
#endif
}
}
STATIC void mp_machine_pwm_deinit(machine_pwm_obj_t *self) {
if (self->is_flexpwm) {
PWM_StopTimer(self->instance, 1 << self->submodule);
#ifdef FSL_FEATURE_SOC_TMR_COUNT
} else {
QTMR_StopTimer((TMR_Type *)self->instance, self->channel1);
#endif
}
}
mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(self->freq);
}
void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) {
self->freq = freq;
configure_pwm(self);
}
mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(self->duty_u16);
}
void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty) {
if (duty >= 0) {
if (duty >= PWM_FULL_SCALE) {
mp_raise_ValueError(MP_ERROR_TEXT(ERRMSG_VALUE));
}
self->duty_u16 = duty;
self->duty_ns = 0;
configure_pwm(self);
}
}
mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(1000000000ULL / self->freq * self->duty_u16 / PWM_FULL_SCALE);
}
void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty) {
if (duty >= 0) {
self->duty_ns = duty;
self->duty_u16 = duty_ns_to_duty_u16(self->freq, self->duty_ns);
configure_pwm(self);
}
}