-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathbounds.py
134 lines (90 loc) · 4.73 KB
/
bounds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python3.6
from itertools import repeat
from typing import Any, List
import torch
from torch import Tensor
from utils import eq
class ConstantBounds():
def __init__(self, **kwargs):
self.C: int = kwargs['C']
self.const: Tensor = torch.zeros((self.C, 1, 2), dtype=torch.float32)
for i, (low, high) in kwargs['values'].items():
self.const[i, 0, 0] = low
self.const[i, 0, 1] = high
print(f"Initialized {self.__class__.__name__} with {kwargs}")
def __call__(self, image: Tensor, target: Tensor, weak_target: Tensor, filename: str) -> Tensor:
return self.const
class TagBounds(ConstantBounds):
def __init__(self, **kwargs):
super().__init__(C=kwargs['C'], values=kwargs["values"]) # We use it as a dummy
self.idc: List[int] = kwargs['idc']
self.idc_mask: Tensor = torch.zeros(self.C, dtype=torch.uint8) # Useful to mask the class booleans
self.idc_mask[self.idc] = 1
print(f"Initialized {self.__class__.__name__} with {kwargs}")
def __call__(self, image, target: Tensor, weak_target: Tensor, filename: str) -> Tensor:
positive_class: Tensor = torch.einsum("cwh->c", target) > 0
weak_positive_class: Tensor = torch.einsum("cwh->c", weak_target) > 0
masked_positive: Tensor = torch.einsum("c,c->c", positive_class, self.idc_mask).type(torch.float32) # Keep only the idc
masked_weak: Tensor = torch.einsum("c,c->c", weak_positive_class, self.idc_mask).type(torch.float32)
assert eq(masked_positive, masked_weak), f"Unconsistent tags between labels: {filename}"
res: Tensor = super().__call__(image, target, weak_target, filename)
masked_res = torch.einsum("cki,c->cki", res, masked_positive)
return masked_res
class PreciseBounds():
def __init__(self, **kwargs):
self.margin: float = kwargs['margin']
self.mode: str = kwargs['mode']
self.__fn__ = getattr(__import__('utils'), kwargs['fn'])
print(f"Initialized {self.__class__.__name__} with {kwargs}")
def __call__(self, image: Tensor, target: Tensor, weak_target: Tensor, filename: str) -> Tensor:
value: Tensor = self.__fn__(target[None, ...])[0].type(torch.float32) # cwh and not bcwh
margin: Tensor
if self.mode == "percentage":
margin = value * self.margin
elif self.mode == "abs":
margin = torch.ones_like(value) * self.margin
else:
raise ValueError("mode")
with_margin: Tensor = torch.stack([value - margin, value + margin], dim=-1)
assert with_margin.shape == (*value.shape, 2), with_margin.shape
res = torch.max(with_margin, torch.zeros(*value.shape, 2)).type(torch.float32)
return res
class PreciseTags(PreciseBounds):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.neg_value: List = kwargs['neg_value']
def __call__(self, image: Tensor, target: Tensor, weak_target: Tensor, filename: str) -> Tensor:
positive_class: Tensor = torch.einsum("cwh->c", target) > 0
res = super().__call__(image, target, weak_target, filename)
masked = res[...]
masked[positive_class == 0] = torch.Tensor(self.neg_value)
return masked
class PreciseUpper(PreciseBounds):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def __call__(self, image: Tensor, target: Tensor, weak_target: Tensor, filename: str) -> Tensor:
res = super().__call__(image, target, weak_target, filename)
c, d, b = res.shape
assert b == 2
positive_class: Tensor = torch.einsum("cwh->c", target) > 0
assert positive_class.shape == (c,)
masked = res[...]
masked[positive_class, :, 0] = 1
masked[~positive_class, :, 0] = 0 # Probably superfluous
return masked
class BoxBounds():
def __init__(self, **kwargs):
self.margins: Tensor = torch.Tensor(kwargs['margins'])
assert len(self.margins) == 2
assert self.margins[0] <= self.margins[1]
def __call__(self, image: Tensor, target: Tensor, weak_target: Tensor, filename: str) -> Tensor:
c = len(weak_target)
box_sizes: Tensor = torch.einsum("cwh->c", weak_target)[..., None].type(torch.float32)
bounds: Tensor = box_sizes * self.margins
res = bounds[:, None, :]
assert res.shape == (c, 1, 2)
assert (res[..., 0] <= res[..., 1]).all()
# exact_sizes: Tensor = torch.einsum("cwh->c", target).type(torch.float32)
# assert (res[3, 0, 0] <= exact_sizes[3]).all(), (res[:, 0, 0], exact_sizes, box_sizes[..., 0])
# assert (res[3, 0, 1] >= exact_sizes[3]).all(), (res[:, 0, 1], exact_sizes, box_sizes[..., 0])
return res