-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathscheduler.py
40 lines (26 loc) · 1.38 KB
/
scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python3.7
from typing import Any, Callable, List, Tuple
from operator import add
from utils import map_, uc_
class DummyScheduler(object):
def __call__(self, epoch: int, optimizer: Any, loss_fns: List[Callable], loss_weights: List[float]) \
-> Tuple[float, List[Callable], List[float]]:
return optimizer, loss_fns, loss_weights
class AddWeightLoss():
def __init__(self, to_add: List[float]):
self.to_add: List[float] = to_add
def __call__(self, epoch: int, optimizer: Any, loss_fns: List[Callable], loss_weights: List[float]) \
-> Tuple[float, List[Callable], List[float]]:
assert len(self.to_add) == len(loss_weights)
new_weights: List[float] = map_(uc_(add), zip(loss_weights, self.to_add))
print(f"Loss weights went from {loss_weights} to {new_weights}")
return optimizer, loss_fns, new_weights
class StealWeight():
def __init__(self, to_steal: float):
self.to_steal: float = to_steal
def __call__(self, epoch: int, optimizer: Any, loss_fns: List[Callable], loss_weights: List[float]) \
-> Tuple[float, List[Callable], List[float]]:
a, b = loss_weights
new_weights: List[float] = [max(0.1, a - self.to_steal), b + self.to_steal]
print(f"Loss weights went from {loss_weights} to {new_weights}")
return optimizer, loss_fns, new_weights