-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathslice_promise.py
186 lines (142 loc) · 6.84 KB
/
slice_promise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python3.6
import re
import random
import argparse
import warnings
from pathlib import Path
from pprint import pprint
from functools import partial
from typing import Any, Callable, List, Tuple
import numpy as np
import nibabel as nib
import SimpleITK as sitk
from tqdm import tqdm
from numpy import unique as uniq
from skimage.io import imread, imsave
from skimage.transform import resize
from utils import mmap_, uc_, map_, augment
def norm_arr(img: np.ndarray) -> np.ndarray:
casted = img.astype(np.float32)
shifted = casted - casted.min()
norm = shifted / shifted.max()
res = 255 * norm
return res.astype(np.uint8)
def get_p_id(path: Path, regex: str = "(Case\d+)(_segmentation)?") -> str:
matched = re.match(regex, path.stem)
if matched:
return matched.group(1)
raise ValueError(regex, path)
def save_slices(img_p: Path, gt_p: Path,
dest_dir: Path, shape: Tuple[int], n_augment: int,
img_dir: str = "img", gt_dir: str = "gt") -> Tuple[int, int, int]:
p_id: str = get_p_id(img_p)
assert "Case" in p_id
assert p_id == get_p_id(gt_p)
# Load the data
img = imread(str(img_p), plugin='simpleitk')
gt = imread(str(gt_p), plugin='simpleitk')
# print(img.shape, img.dtype, gt.shape, gt.dtype)
# print(img.min(), img.max(), len(np.unique(img)))
# print(np.unique(gt))
assert img.shape == gt.shape
assert img.dtype in [np.int16]
assert gt.dtype in [np.int8]
img_nib = sitk.ReadImage(str(img_p))
dx, dy, dz = img_nib.GetSpacing()
# print(dx, dy, dz)
assert np.abs(dx - dy) <= 0.0000041, (dx, dy, dx - dy)
assert 0.27 <= dx <= 0.75, dx
assert 2.19994 <= dz <= 4.00001, dz
x, y, z = img.shape
assert (y, z) in [(320, 320), (512, 512), (256, 256), (384, 384)], (y, z)
assert 15 <= x <= 54, x
# Normalize and check data content
norm_img = norm_arr(img) # We need to normalize the whole 3d img, not 2d slices
assert 0 == norm_img.min() and norm_img.max() == 255, (norm_img.min(), norm_img.max())
assert norm_img.dtype == np.uint8
save_dir_img: Path = Path(dest_dir, img_dir)
save_dir_gt: Path = Path(dest_dir, gt_dir)
sizes_2d: np.ndarray = np.zeros(img.shape[-1])
for j in range(len(img)):
img_s = norm_img[j, :, :]
gt_s = gt[j, :, :]
assert img_s.shape == gt_s.shape
# Resize and check the data are still what we expect
from time import time
tic = time()
resize_: Callable = partial(resize, mode="constant", preserve_range=True, anti_aliasing=False)
r_img: np.ndarray = resize_(img_s, shape).astype(np.uint8)
r_gt: np.ndarray = resize_(gt_s, shape).astype(np.uint8)
# print(time() - tic)
assert r_img.dtype == r_gt.dtype == np.uint8
assert 0 <= r_img.min() and r_img.max() <= 255 # The range might be smaller
assert set(uniq(r_gt)).issubset(set(uniq(gt)))
sizes_2d[j] = r_gt[r_gt == 1].sum()
# for save_dir, data in zip([save_dir_img, save_dir_gt], [r_img, r_gt]):
# save_dir.mkdir(parents=True, exist_ok=True)
# with warnings.catch_warnings():
# warnings.filterwarnings("ignore", category=UserWarning)
# imsave(str(Path(save_dir, filename)), data)
for k in range(n_augment + 1):
if k == 0:
a_img, a_gt = r_img, r_gt
else:
a_img, a_gt = map_(np.asarray, augment(r_img, r_gt))
for save_dir, data in zip([save_dir_img, save_dir_gt], [a_img, a_gt]):
filename = f"{p_id}_{k}_{j:02d}.png"
save_dir.mkdir(parents=True, exist_ok=True)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
imsave(str(Path(save_dir, filename)), data)
return sizes_2d.sum(), sizes_2d[sizes_2d > 0].min(), sizes_2d.max()
def main(args: argparse.Namespace):
src_path: Path = Path(args.source_dir)
dest_path: Path = Path(args.dest_dir)
# Assume the cleaning up is done before calling the script
assert src_path.exists()
assert not dest_path.exists()
# Get all the file names, avoid the temporal ones
nii_paths: List[Path] = [p for p in src_path.rglob('*.mhd')]
assert len(nii_paths) % 2 == 0, "Uneven number of .nii, one+ pair is broken"
# We sort now, but also id matching is checked while iterating later on
img_nii_paths: List[Path] = sorted(p for p in nii_paths if "_segmentation" not in str(p))
gt_nii_paths: List[Path] = sorted(p for p in nii_paths if "_segmentation" in str(p))
assert len(img_nii_paths) == len(gt_nii_paths)
paths: List[Tuple[Path, Path]] = list(zip(img_nii_paths, gt_nii_paths))
print(f"Found {len(img_nii_paths)} pairs in total")
pprint(paths[:5])
validation_paths: List[Tuple[Path, Path]] = random.sample(paths, args.retain)
training_paths: List[Tuple[Path, Path]] = [p for p in paths if p not in validation_paths]
assert set(validation_paths).isdisjoint(set(training_paths))
assert len(paths) == (len(validation_paths) + len(training_paths))
for mode, _paths, n_augment in zip(["train", "val"], [training_paths, validation_paths], [args.n_augment, 0]):
img_paths, gt_paths = zip(*_paths) # type: Tuple[Any, Any]
dest_dir = Path(dest_path, mode)
print(f"Slicing {len(img_paths)} pairs to {dest_dir}")
assert len(img_paths) == len(gt_paths)
pfun = partial(save_slices, dest_dir=dest_dir, shape=args.shape, n_augment=n_augment)
sizes = mmap_(uc_(pfun), zip(img_paths, gt_paths))
# sizes = []
# for paths in tqdm(list(zip(img_paths, gt_paths)), ncols=50):
# sizes.append(uc_(pfun)(paths))
sizes_3d, sizes_2d_min, sizes_2d_max = map_(np.asarray, zip(*sizes))
print("2d sizes: ", sizes_2d_min.min(), sizes_2d_max.max())
print("3d sizes: ", sizes_3d.min(), sizes_3d.mean(), sizes_3d.max())
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Slicing parameters')
parser.add_argument('--source_dir', type=str, required=True)
parser.add_argument('--dest_dir', type=str, required=True)
parser.add_argument('--img_dir', type=str, default="IMG")
parser.add_argument('--gt_dir', type=str, default="GT")
parser.add_argument('--shape', type=int, nargs="+", default=[256, 256])
parser.add_argument('--retain', type=int, default=10, help="Number of retained patient for the validation data")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--n_augment', type=int, default=0, help="Number of augmentation to create per image, only for the training set")
args = parser.parse_args()
random.seed(args.seed)
print(args)
return args
if __name__ == "__main__":
args = get_args()
random.seed(args.seed)
main(args)