forked from simonas-dev/aubio-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuffer.go
290 lines (255 loc) · 7.73 KB
/
buffer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
package aubio
/*
#cgo LDFLAGS: -laubio
#include <aubio/aubio.h>
#include <wrapper.h>
*/
import "C"
import (
"unsafe"
)
// SimpleBuffer is a wrapper for the aubio fvec_t type. It is used
// as the buffer for processing audio data in an aubio pipeline.
// It is a short sample buffer (32 or 64 bits in size).
type SimpleBuffer struct {
vec *C.fvec_t
}
// NewSimpleBuffer constructs a new SimpleBuffer.
//
// The caller is responsible for calling Free on the returned
// SimpleBuffer to release memory when done.
//
// buf := NewSimpleBuffer(bufSize)
// defer buf.Free()
func NewSimpleBuffer(size uint) *SimpleBuffer {
return &SimpleBuffer{C.new_fvec(C.uint_t(size))}
}
// NewSimpleBuffer constructs a new SimpleBuffer.
//
// The caller is responsible for calling Free on the returned
// SimpleBuffer to release memory when done.
//
// buf := NewSimpleBuffer(bufSize)
// defer buf.Free()
func NewSimpleBufferData(size uint, data []float64) *SimpleBuffer {
b := C.new_fvec(C.uint_t(size))
for i := uint(0); i < uint(len(data)); i++ {
C.fvec_set_sample(b, C.smpl_t(data[i]), C.uint_t(i))
}
return &SimpleBuffer{b}
}
// Update the values of the buffer from float64 data
func (b *SimpleBuffer) SetData(data []float64) {
for i := uint(0); i < uint(len(data)); i++ {
C.fvec_set_sample(b.vec, C.smpl_t(data[i]), C.uint_t(i))
}
}
// Update the values of the buffer from float64 data
func (b *SimpleBuffer) SetDataF32(data []float32) {
for i := C.uint_t(0); i < C.uint_t(len(data)); i++ {
C.fvec_set_sample(b.vec, C.smpl_t(data[i]), i)
}
}
// TODO directly operating on the C memory would be fast but also dangerous
// https://copyninja.info/blog/workaround-gotypesystems.html
// Update the values of the buffer using C type casting to avoid conversion overheads.
// This function uses unsafe pointers (careful!)
// The only reason this works is because C.smpl_t is just a float32 under the hood.
// There isn't really any speedup compared to SetDataF32 so no reason to use this.
func (b *SimpleBuffer) SetDataUnsafe(data []float32) {
cast := *(*[]C.smpl_t)(unsafe.Pointer(&data))
for i := C.uint_t(0); i < C.uint_t(len(data)); i++ {
C.fvec_set_sample(b.vec, cast[i], i)
}
}
// uses a c wrapper to set the data in a single c call, much faster
func (b *SimpleBuffer) SetDataFast(data []float32) {
// unsafe cast to smpl_t (it's just float32 [i think])
// cast := *(*[]C.smpl_t)(unsafe.Pointer(&f32data))
C.fvec_set_buffer(b.vec, (*C.smpl_t)(unsafe.Pointer(&data[0])))
}
// Returns the contents of this buffer as a slice.
// The data is copied so the slices are still valid even
// after the buffer has changed.
func (b *SimpleBuffer) Slice() []float64 {
sl := make([]float64, b.Size())
for i := uint(0); i < b.Size(); i++ {
sl[int(i)] = b.Get(i)
}
return sl
}
func (b *SimpleBuffer) Get(i uint) float64 {
return float64(C.fvec_get_sample(b.vec, C.uint_t(i)))
}
// Size returns the size of this buffer.
func (b *SimpleBuffer) Size() uint {
if b.vec == nil {
return 0
}
return uint(b.vec.length)
}
// Free frees the memory aubio allocated for this buffer.
func (b *SimpleBuffer) Free() {
if b.vec == nil {
return
}
C.del_fvec(b.vec)
b.vec = nil
}
// ComplexBuffer is a wrapper for the aubio cvec_t type.
// It contains complex sample data.
type ComplexBuffer struct {
data *C.cvec_t
}
// NewComplexBuffer constructs a buffer.
//
// The caller is responsible for calling Free on the returned
// ComplexBuffer to release memory when done.
//
// buf := NewComplexBuffer(bufSize)
// defer buf.Free()
func NewComplexBuffer(size uint) *ComplexBuffer {
return &ComplexBuffer{data: C.new_cvec(C.uint_t(size))}
}
// NewComplexBuffer constructs a buffer with data.
//
func NewComplexBufferData(size uint, data []float64) *ComplexBuffer {
b := C.new_cvec(C.uint_t(size))
for i := uint(0); i < uint(len(data)); i++ {
C.cvec_norm_set_sample(b, C.smpl_t(data[i]), C.uint_t(i))
}
return &ComplexBuffer{b}
}
// Free frees the memory aubio has allocated for this buffer.
func (cb *ComplexBuffer) Free() {
if cb.data != nil {
C.del_cvec(cb.data)
}
}
// Size returns the size of this ComplexBuffer.
func (cb *ComplexBuffer) Size() uint {
if cb.data == nil {
return 0
}
return uint(cb.data.length)
}
// Norm returns the slice of norm data.
// The data is copies so the slice is still
// valid after the buffer has changed.
func (cb *ComplexBuffer) Norm() []float64 {
sl := make([]float64, cb.Size())
for i := uint(0); i < cb.Size(); i++ {
sl[int(i)] = float64(C.cvec_norm_get_sample(cb.data, C.uint_t(i)))
}
return sl
}
// Norm returns the slice of phase data.
// The data is copies so the slice is still
// valid after the buffer has changed.
func (cb *ComplexBuffer) Phase() []float64 {
sl := make([]float64, cb.Size())
for i := uint(0); i < cb.Size(); i++ {
sl[int(i)] = float64(C.cvec_phas_get_sample(cb.data, C.uint_t(i)))
}
return sl
}
// Buffer for Long sample data (64 bits)
type LongSampleBuffer struct {
vec *C.lvec_t
}
// NewLBuffer constructs a *LongSampleBuffer.
//
// The caller is responsible for calling Free on the returned
// LongSampleBuffer to release memory when done.
//
// buf := NewLBuffer(bufSize)
// defer buf.Free()
func NewLBuffer(size uint) *LongSampleBuffer {
return newLBufferFromVec(C.new_lvec(C.uint_t(size)))
}
func newLBufferFromVec(v *C.lvec_t) *LongSampleBuffer {
return &LongSampleBuffer{vec: v}
}
// Free frees the memory allocated by aubio for this buffer.
func (lb *LongSampleBuffer) Free() {
if lb.vec != nil {
C.del_lvec(lb.vec)
lb.vec = nil
}
}
// Size returns this buffers size.
func (lb *LongSampleBuffer) Size() uint {
return uint(lb.vec.length)
}
// Returns the contents of this buffer as a slice.
// The data is copied so the slices are still valid even
// after the buffer has changed.
func (lb *LongSampleBuffer) Slice() []float64 {
sl := make([]float64, lb.Size())
for i := uint(0); i < lb.Size(); i++ {
sl[int(i)] = float64(C.lvec_get_sample(lb.vec, C.uint_t(i)))
}
return sl
}
type MatrixBuffer struct {
Length uint
Height uint
mat *C.fmat_t
}
// NewMatBuffer constructs a *MatrixBuffer.
// Height is the number of channels
// Length is the length of a channel
//
// The caller is responsible for calling Free on the returned
// LongSampleBuffer to release memory when done.
//
// buf := NewLBuffer(bufSize)
// defer buf.Free()
func NewMatrixBuffer(height, length uint) *MatrixBuffer {
return NewMatrixBufferFromFmat(C.new_fmat(C.uint_t(height), C.uint_t(length)))
}
func NewMatrixBufferFromFmat(mat *C.fmat_t) *MatrixBuffer {
return &MatrixBuffer{
Length: uint(mat.length),
Height: uint(mat.height),
mat: mat,
}
}
// Free frees the memory allocated by aubio for this buffer.
func (mb *MatrixBuffer) Free() {
if mb.mat != nil {
C.del_fmat(mb.mat)
mb.mat = nil
}
}
func (mb *MatrixBuffer) Size() uint {
return mb.Length * mb.Height
}
// Returns the full contents of this matrix buffer as a 2d slice (Length, Height).
// Think of it as a [Height]Channel, where Channel is [Length]float64
// The data is copied so the slices are still valid even
// after the buffer has changed.
func (mb *MatrixBuffer) GetChannels() [][]float64 {
sl := make([][]float64, mb.Height)
for i := uint(0); i < mb.Height; i++ {
sl[int(i)] = mb.GetChannel(i)
}
return sl
}
func (mb *MatrixBuffer) GetChannel(channel uint) []float64 {
sl := make([]float64, mb.Length)
for i := uint(0); i < mb.Length; i++ {
sl[int(i)] = float64(C.fmat_get_sample(mb.mat, C.uint_t(channel), C.uint_t(i)))
}
return sl
}
func (mb *MatrixBuffer) SetChannels(data [][]float64) {
for i := uint(0); i < mb.Height; i++ {
mb.SetChannel(i, data[i])
}
}
func (mb *MatrixBuffer) SetChannel(channel uint, data []float64) {
for i := uint(0); i < mb.Length; i++ {
C.fmat_set_sample(mb.mat, C.smpl_t(data[i]), C.uint_t(channel), C.uint_t(i))
}
}