forked from LearningInfiniTensor/learning-lm-rs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTinyStories-656K_inference.py
45 lines (31 loc) · 1.25 KB
/
TinyStories-656K_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
from torch import nn
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, LlamaModel
# 指定模型目录
# model_path = "raincandy-u/TinyStories-656K"
model_path = "./models/story"
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(model_path)
# print('tokenizer:', tokenizer)
# 加载模型并移动到 GPU(如果可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型
model = AutoModelForCausalLM.from_pretrained(model_path).to(device)
# print('model:', model)
# 测试模型和分词器
text = "<|start_story|>Once upon a time, "
inputs = tokenizer(text, return_tensors="pt").to(device)
print('inputs:', inputs)
outputs = model.generate(
**inputs,
pad_token_id=tokenizer.eos_token_id,
max_new_tokens=256,
do_sample=True,
top_k=40,
top_p=0.9,
temperature=0.6
)
print('outputs.shape:', outputs.shape)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# print('generated_text:', generated_text)
# 请将上述模型的推理步骤细化,给出从text经过tokenizer.encode、input embedding、Decoder(RMS Norm、masked multi-head self-attention、RMS Norm、MLP)、RMS Norm、Output embedding、tokenizer.decode的完整计算过程