-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkernel_models.py
254 lines (217 loc) · 9.38 KB
/
kernel_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
'''
Kernel Models:
- kernel Ridge Regression
- kernel SVM
'''
import numpy as np
import cvxpy as cp
from functools import partial
from sklearn.base import BaseEstimator, ClassifierMixin # Used only for easy Grid Search
from kernels import Gaussian_kernel, Spectrum_kernel, substring_kernel, Fisher_kernel
class KernelRidgeRegressor(BaseEstimator, ClassifierMixin):
def __init__(self, lamb=1., sigma=1., kernel='gaussian'):
"""
This class implements methods for fitting and predicting with a KernelRidgeRegressor used for classification
(by thresholding the value regressed). Any kernel can be used.
inputs:
- lamb : the regularisation parameter
- sigma : the parameter of the Gaussian kernel (if Gaussian kernel selected)
- kernel : the kernel we consider
"""
self.lamb = lamb
self.sigma = sigma
self.kernel = kernel
if self.kernel == 'gaussian':
self.kernel_ = partial(Gaussian_kernel, sig=sigma)
else:
raise NotImplementedError(f"Kernel {self.kernel} is not implemented yet")
def fit(self, X, y):
"""
inputs:
- X (size: N_trxd): the points of the training set
- y (size: N_trx1): the values of the classes
"""
# We keep values of training in memory for prediction
self.X_tr_ = np.copy(X)
K = self.kernel_(X, X, sig=self.sigma)
self.alpha_ = np.linalg.inv(K+self.lamb*X.shape[0]*np.eye(X.shape[0]))@y
return self
def predict(self, X):
"""
inputs:
- X (size N_texd): the points in R^d we want to classify
output:
- the predicted class for the associated y given the
Linear Regression parameters
"""
K_tr_te = self.kernel_(self.X_tr_, X, sig=self.sigma)
return 2 * (self.alpha_.T@K_tr_te > 0).reshape(-1, ).astype("int") - 1
def score(self, X, y):
"""
inputs:
- X (size N_texd): the points in R^d we want to classify
- y (size N_tex1): the labels of the points
"""
y_pred = self.predict(X)
return np.sum(y_pred == y)/y.shape[0]
class KernelSVM(BaseEstimator, ClassifierMixin):
def __init__(self, lamb=1., sigma=1., k = 3, X_HMM= None, kernel=None, precomputed_kernel=None):
"""
This class implements methods for fitting and predicting with a KernelRidgeRegressor used for classification
(by thresholding the value regressed). Any kernel can be used.
inputs:
- lamb : the regularisation parameter
- sigma : the parameter of the Gaussian kernel (if Gaussian kernel selected)
- kernel : the kernel we consider
"""
self.lamb = lamb
self.sigma = sigma
self.k = k
self.kernel = kernel
self.params = {'lamb': lamb, 'sig': sigma, 'k': k}
self.X_HMM = X_HMM
if precomputed_kernel is not None:
self.kernel_ = precomputed_kernel
elif self.kernel == 'gaussian':
self.kernel_ = partial(Gaussian_kernel, sig=sigma)
elif self.kernel == 'spectrum':
self.kernel_ = partial(Spectrum_kernel, k=k)
elif self.kernel == 'substring':
warnings.warn("Computing the subtring kernel on the fly is computationnally heavy, you should probably precompute it.")
self.kernel_ = partial(substring_kernel, k=k)
elif self.kernel == 'fisher':
self.kernel_ = partial(Fisher_kernel, k=k)
else:
raise NotImplementedError(f"Kernel {self.kernel} is not implemented yet")
def fit(self, X, y):
"""
inputs:
- X (size: N_trxd): the points of the training set
- y (size: N_trx1): the values of the classes
"""
# We keep values of training in memory for prediction
N_tr = X.shape[0]
self.X_tr_ = np.copy(X)
# if self.kernel == 'gaussian':
# K = self.kernel_(X, X, sig=self.sigma)
# elif self.kernel == 'spectrum':
# K = self.kernel_(X, X, k=self.k[0])
# for i in range(len(self.k)-1):
# K+=self.kernel_(X, X, k=self.k[i+1])
if self.kernel =='fisher':
K = self.kernel_(X, X, self.X_HMM, **self.params)
K+= 1e-8
else:
K = self.kernel_(X, X, **self.params)
# Define QP and solve it with cvxpy
alpha = cp.Variable(N_tr)
objective = cp.Maximize(2*alpha.T@y - cp.quad_form(alpha, K))
constraints = [0 <= cp.multiply(y,alpha), cp.multiply(y,alpha) <= 1/(2*self.lamb*N_tr)]
prob = cp.Problem(objective, constraints)
# The optimal objective value is returned by `prob.solve()`.
result = prob.solve()
# The optimal value for x is stored in `x.value`.
self.alpha_ = alpha.value
return self
def predict(self, X):
"""
inputs:
- X (size N_texd): the points in R^d we want to classify
output:
- the predicted class for the associated y given the
Linear Regression parameters
"""
# if self.kernel == 'gaussian':
# K_tr_te = self.kernel_(self.X_tr_, X, sig=self.sigma)
# elif self.kernel == 'spectrum':
# K_tr_te = self.kernel_(self.X_tr_, X, k=self.k[0])
# for i in range(len(self.k)-1):
# K_tr_te+=self.kernel_(self.X_tr_, X, k=self.k[i+1])
if self.kernel == 'fisher':
K_tr_te = self.kernel_(self.X_tr_, X, self.X_HMM, **self.params)
K_tr_te+= 1e-8
else:
K_tr_te = self.kernel_(self.X_tr_, X, **self.params)
return 2 * (self.alpha_.T@K_tr_te > 0).reshape(-1, ).astype("int") - 1
def score(self, X, y):
"""
inputs:
- X (size N_texd): the points in R^d we want to classify
- y (size N_tex1): the labels of the points
"""
y_pred = self.predict(X)
return np.sum(y_pred == y)/y.shape[0]
def simplex_projection(eta):
# See https://lcondat.github.io/publis/Condat_simplexproj.pdf, Algorithm 1 for an explanation of this function
u = np.sort(eta)[::-1]
tmp = (np.cumsum(u) - 1) / (np.arange(len(eta)) + 1)
nonzero = np.nonzero(tmp < u)[0]
if len(nonzero) > 0:
K = nonzero[-1]
else:
K = -1
tau = tmp[K]
return np.maximum(eta - tau, 0)
class KernelMKL(object):
def __init__(self, lamb, kernels, get_precomputed_kernels, step, n_iterations=1):
"""
inputs:
- lamb: lambda parameter for the SVM
- kernels: dict of list of kernels to use for training and testing. This datastructure should have the following format:
- "train"
| -- (array) kernel 1
| -- (array) kernel 2
| -- ...
- "eval"
| -- (array) kernel 1
| -- (array) kernel 2
| -- ...
- get_precomputed_kernels: function that takes in arguments `K_tr` and `K_ev` and returns a precomputed_kernel.
- step: gradient descent step
- n_iterations: number of iterations for the projected gradient algorithm.
"""
self.lamb = lamb
self.kernels = kernels
self.get_precomputed_kernels = get_precomputed_kernels
self.step = step
self.n_iterations = n_iterations
assert len(kernels["train"]) == len(kernels["eval"])
self.n_kernels = len(kernels["train"])
self.eta = np.ones(self.n_kernels) / self.n_kernels
def fit(self, X, y, tr_idx):
for _ in range(self.n_iterations):
# compute weighted sum of kernels
K_tr = sum([self.eta[i] * self.kernels["train"][i] for i in range(self.n_kernels)])
precomputed_kernel = self.get_precomputed_kernels(K_tr=K_tr)
# compute your objective function by fitting a SVM
model = KernelSVM(lamb=self.lamb, precomputed_kernel=precomputed_kernel)
model.fit(X, y)
# gradient descent step
grad = np.zeros(self.n_kernels)
for i in range(self.n_kernels):
grad[i] = -self.lamb * [email protected]["train"][i][np.ix_(tr_idx, tr_idx)]@model.alpha_
self.eta -= self.step * grad
# projection of the new eta to the simplex
self.eta = simplex_projection(self.eta)
# fit your model with your final parameters. We also load the evaluation kernel so that we can run directly functions from the SVM class
K_tr = sum([self.eta[i] * self.kernels["train"][i] for i in range(self.n_kernels)])
K_ev = sum([self.eta[i] * self.kernels["eval"][i] for i in range(self.n_kernels)])
precomputed_kernel = self.get_precomputed_kernels(K_tr=K_tr, K_ev=K_ev)
self.model = KernelSVM(lamb=self.lamb, precomputed_kernel=precomputed_kernel)
self.model.fit(X, y)
def predict(self, X):
"""
inputs:
- X (size N_texd): the points in R^d we want to classify
output:
- the predicted class for the associated y given the
Linear Regression parameters
"""
return self.model.predict(X)
def score(self, X, y):
"""
inputs:
- X (size N_texd): the points in R^d we want to classify
- y (size N_tex1): the labels of the points
"""
return self.model.score(X, y)