-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
67 lines (47 loc) · 2.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
import numpy as np
import pandas as pd
import time
from utils import write_csv, run_model
from kernels import Mismatch_kernel
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mkl', action='store_true', help="If used, will produce the solution obtained using MKL, otherwise the one with a single mismatch kernel.")
parser.add_argument('--savefile', type=str, default="test_submission.csv")
parser.add_argument('--data_folder', type=str, default='data')
args = parser.parse_args()
print("Careful ! This script requires computing Mismatch kernels, which can be quite long.")
# If only single mismatch
if not args.mkl:
default_params = {"lamb": 15, "k": 7, "m": 3}
K = []
print("Computing kernels...")
for name in [0, 1, 2]:
X = np.array(pd.read_csv(f'{args.data_folder}/Xtr{name}.csv')['seq'])
X_ev = np.array(pd.read_csv(f'{args.data_folder}/Xte{name}.csv')['seq'])
t0 = time.time()
K_tr = Mismatch_kernel(X, X, k=default_params['k'], m=default_params['m'])
K_te = Mismatch_kernel(X, X_ev, k=default_params['k'], m=default_params['m'])
print(f"Finished computing mismatch kernel for dataset {name}.")
K.append({"train": K_tr, "eval": K_te})
preds, _ = run_model('ksvm', kernel='', K=K, sequence=True, prop_test=0.2, default_params=default_params)
write_csv(np.arange(preds.shape[0]), preds, args.savefile)
# If MKL is used
else:
default_params = {"lamb": 25, "step": .05}
kernel_params = [(7, 3), (8, 3)]
K = [{"train": [], "eval": []} for _ in range(3)]
print("Computing kernels...")
for name in [0, 1, 2]:
X = np.array(pd.read_csv(f'{args.data_folder}/Xtr{name}.csv')['seq'])
X_ev = np.array(pd.read_csv(f'{args.data_folder}/Xte{name}.csv')['seq'])
for (k, m) in kernel_params:
t0 = time.time()
K_tr = Mismatch_kernel(X, X, k=k, m=m)
K_te = Mismatch_kernel(X, X_ev, k=k, m=m)
print(f"Finished computing mismatch kernel {k}, {m} for dataset {name}.")
K[name]["train"].append(K_tr)
K[name]["eval"].append(K_te)
preds, _ = run_model('ksvm', kernel='', K=K, sequence=True, prop_test=0.2,
default_params=default_params, use_mkl=True, mkl_iterations=5)
write_csv(np.arange(preds.shape[0]), preds, args.savefile)