-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_lstm_time_interval.py
52 lines (39 loc) · 1.6 KB
/
main_lstm_time_interval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import importlib
import os
import torch
from dataset.toy_dataset import ToyDataset
from engine.lstm_engine import LSTMEngine
from models.lstm_model import LSTMModel
from utils.cuda import put_model_on_gpu
from utils.record import pickle_history
def main(args):
cfg = importlib.import_module(args.config)
log_dir = args.logdir
engine = LSTMEngine(cfg, log_dir)
dataset_train = ToyDataset(subset="train")
dataloader_train = ToyDataset.get_dataloader(dataset_train,
cfg.batch_size)
dataset_val = ToyDataset(subset="val")
dataloader_val = ToyDataset.get_dataloader(dataset_val, cfg.batch_size)
model = put_model_on_gpu(LSTMModel(**cfg.lstm_cfg), cfg.devices)
loss_fn = cfg.loss_fn()
optimizer = cfg.optimizer(model.parameters(), **cfg.optim_params)
engine.compile(model, optimizer, loss_fn, cfg.metrics)
scheduler = cfg.lr_scheduler(engine.optimizer,
total_steps=cfg.epochs * len(dataloader_train),
**cfg.lr_scheduler_params)
engine.train(dataloader_train, cfg.epochs, dataloader_val, scheduler)
torch.save(model.state_dict(),
os.path.join(engine.log_path, "model_weights.pth"))
pickle_history(engine.history, engine.log_path)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str,
default="config.lstm_time_interval_cfg",
help="The configuration file to use.")
parser.add_argument("--logdir", type=str,
required=True,
help="The directory to save tensorboard logs and model.")
args = parser.parse_args()
main(args)