-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpredictor.py
199 lines (161 loc) · 7.4 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import math
from torch import nn
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super(PositionalEncoding, self).__init__()
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
pe = pe.permute(1, 0, 2)
self.register_buffer('pe', pe)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
x = x + self.pe
return self.dropout(x)
class CrossTransformer(nn.Module):
def __init__(self):
super(CrossTransformer, self).__init__()
self.cross_attention = nn.MultiheadAttention(128, 8, 0.1, batch_first=True)
self.ffn = nn.Sequential(nn.LayerNorm(128), nn.Linear(128, 512), nn.ReLU(), nn.Dropout(0.1), nn.Linear(512, 128), nn.LayerNorm(128))
def forward(self, query, key, mask=None):
value = key
mask[:, 0] = False
attention_output, _ = self.cross_attention(query, key, value, key_padding_mask=mask)
output = self.ffn(attention_output)
return output
class SelfTransformer(nn.Module):
def __init__(self):
super(SelfTransformer, self).__init__()
self.self_attention = nn.MultiheadAttention(128, 8, 0.1, batch_first=True)
self.ffn = nn.Sequential(nn.LayerNorm(128), nn.Linear(128, 512), nn.ReLU(), nn.Dropout(0.1), nn.Linear(512, 128), nn.LayerNorm(128))
def forward(self, input, mask=None):
attention_output, _ = self.self_attention(input, input, input, key_padding_mask=mask)
output = self.ffn(attention_output)
return output
class AgentEncoder(nn.Module):
def __init__(self):
super(AgentEncoder, self).__init__()
self.position = nn.Sequential(nn.Linear(5, 64), nn.ReLU(), nn.Linear(64, 128))
self.encode = PositionalEncoding(d_model=128, max_len=11)
self.history = SelfTransformer()
def forward(self, inputs):
mask = torch.eq(inputs[:, :, 0], 0)
mask[:, -1] = False
time = self.history(self.encode(self.position(inputs)), mask=mask)
output = time[:, -1]
return output
class MapEncoder(nn.Module):
def __init__(self):
super(MapEncoder, self).__init__()
self.waypoint = nn.Sequential(nn.Linear(4, 64), nn.ReLU(), nn.Linear(64, 128))
def forward(self, inputs):
output = self.waypoint(inputs)
return output
class Agent2Agent(nn.Module):
def __init__(self):
super(Agent2Agent, self).__init__()
self.interaction_1 = SelfTransformer()
self.interaction_2 = SelfTransformer()
def forward(self, inputs, mask=None):
output = self.interaction_1(inputs, mask=mask)
output = self.interaction_2(inputs+output, mask=mask)
return output
class Agent2Map(nn.Module):
def __init__(self):
super(Agent2Map, self).__init__()
self.position_encode = PositionalEncoding(d_model=128, max_len=51)
self.lane = CrossTransformer()
self.map = CrossTransformer()
def forward(self, actor, waypoints, mask):
query = actor.unsqueeze(1)
lane_attention = torch.cat([self.lane(query, self.position_encode(waypoints[:, i]), mask[:, i])
for i in range(waypoints.shape[1])], dim=1)
map_attention = self.map(query, lane_attention, mask[:, :, 10])
output = map_attention.squeeze(1)
return output
class Decoder(nn.Module):
def __init__(self, use_interaction):
super(Decoder, self).__init__()
self.use_interaction = use_interaction
if use_interaction:
self.cell = nn.GRUCell(input_size=128, hidden_size=384)
self.plan_input = nn.Linear(3, 128)
self.state_input = nn.Linear(3, 128)
else:
self.cell = nn.GRUCell(input_size=3, hidden_size=384)
self.decode = nn.Sequential(nn.Dropout(0.1), nn.Linear(384, 64), nn.ELU(), nn.Linear(64, 3))
def forward(self, init_hidden, plan, gate, init_state):
output = []
hidden = init_hidden
state = init_state
for t in range(30):
if self.use_interaction:
plan_input = self.plan_input(plan[:, t, :3])
state_input = self.state_input(state[:, :3])
input = state_input + plan_input * gate
else:
input = state[:, :3]
hidden = self.cell(input, hidden)
state = self.decode(hidden) + state[:, :3]
output.append(state)
output = torch.stack(output, dim=1)
return output
class Predictor(nn.Module):
def __init__(self, use_interaction):
super(Predictor, self).__init__()
# Observation space
# Ego: (B, T_h, 4)
# Neighbor: (B, N_n, T_h, 4)
# Ego map: (B, N_l, 51, 4)
# Neighbor map: (B, N_n, N_l, 51, 4)
# Plan: (B, T_f, 4)
# agent layer
self.ego_net = AgentEncoder()
self.neighbor_net = AgentEncoder()
# map layer
self.map_net = MapEncoder()
# attention layers
self.agent_map = Agent2Map()
self.agent_agent = Agent2Agent()
self.gate = nn.Sequential(nn.Linear(256, 64), nn.ReLU(), nn.Linear(64, 1), nn.Sigmoid())
# decoder layer
self.decoder = Decoder(use_interaction)
def forward(self, observations, plan):
# get inputs and encode them
for key, sub_space in observations.items():
if key == 'ego_state':
ego = sub_space
encoded_ego = [self.ego_net(ego)]
elif key == 'neighbors_state':
neighbors = sub_space
encoded_neighbors = [self.neighbor_net(neighbors[:, i]) for i in range(neighbors.shape[1])]
elif key == 'ego_map':
ego_map = sub_space
encoded_ego_map = self.map_net(ego_map)
elif key == 'neighbors_map':
neighbor_map = sub_space
encoded_neighbor_map = self.map_net(neighbor_map)
else:
raise KeyError
# agent-agent interaction Transformer
encoded_actors = torch.stack(encoded_ego + encoded_neighbors, dim=1)
actor_mask = torch.eq(torch.cat([ego.unsqueeze(1), neighbors], dim=1), 0)[:, :, -1, 0]
actor_mask[:, 0] = False
agent_agent = self.agent_agent(encoded_actors, actor_mask)
# agent-map Transformer
per_agent_tensor_list = []
for i in range(neighbors.shape[1]):
map_mask = torch.eq(neighbor_map[:, i, :, :, -1], 0)
agent_map = self.agent_map(agent_agent[:, i+1], encoded_neighbor_map[:, i], map_mask)
per_agent_tensor_list.append(torch.cat([agent_map, encoded_neighbors[i], agent_agent[:, i+1]], dim=-1))
# decode interaction-aware trajectories
per_agent_prediction_list = []
for i in range(neighbors.shape[1]):
gate = self.gate(torch.cat([encoded_ego[0], encoded_neighbors[i]], dim=-1))
predict_traj = self.decoder(per_agent_tensor_list[i], plan, gate, neighbors[:, i, -1])
per_agent_prediction_list.append(predict_traj)
prediction = torch.stack(per_agent_prediction_list, dim=1)
return prediction