-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsuperglue.py
449 lines (362 loc) · 17.5 KB
/
superglue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# Code adapted from: https://github.com/magicleap/SuperGluePretrainedNetwork
# License from the repository applies to this part of the framework.
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from copy import deepcopy
from pathlib import Path
from typing import List, Tuple
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn
import utils as u
def simple_nms(scores, nms_radius: int):
""" Fast Non-maximum suppression to remove nearby points """
assert(nms_radius >= 0)
def max_pool(x):
return torch.nn.functional.max_pool2d(
x, kernel_size=nms_radius*2+1, stride=1, padding=nms_radius)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
def remove_borders(keypoints, scores, border: int, height: int, width: int):
""" Removes keypoints too close to the border """
mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border))
mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border))
mask = mask_h & mask_w
return keypoints[mask], scores[mask]
def top_k_keypoints(keypoints, scores, k: int):
if k >= len(keypoints):
return keypoints, scores
scores, indices = torch.topk(scores, k, dim=0)
return keypoints[indices], scores
def sample_descriptors(keypoints, descriptors, s: int = 8):
""" Interpolate descriptors at keypoint locations """
b, c, h, w = descriptors.shape
keypoints = keypoints - s / 2 + 0.5
keypoints /= torch.tensor([(w*s - s/2 - 0.5), (h*s - s/2 - 0.5)],
).to(keypoints)[None]
keypoints = keypoints*2 - 1 # normalize to (-1, 1)
args = {'align_corners': True} if torch.__version__ >= '1.3' else {}
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', **args)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1)
return descriptors
class SuperPoint(nn.Module):
"""SuperPoint Convolutional Detector and Descriptor
SuperPoint: Self-Supervised Interest Point Detection and
Description. Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich. In CVPRW, 2019. https://arxiv.org/abs/1712.07629
"""
default_config = {
'descriptor_dim': 256,
'nms_radius': 4,
'keypoint_threshold': 0.005,
'max_keypoints': -1,
'remove_borders': 4,
}
def __init__(self, config):
super().__init__()
self.config = {**self.default_config, **config}
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256
self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)
self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)
self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convDb = nn.Conv2d(
c5, self.config['descriptor_dim'],
kernel_size=1, stride=1, padding=0)
# path = Path(__file__).parent / 'weights/superpoint_v1.pth'
# self.load_state_dict(torch.load(str(path)))
mk = self.config['max_keypoints']
if mk == 0 or mk < -1:
raise ValueError('\"max_keypoints\" must be positive or \"-1\"')
# print('Loaded SuperPoint model')
def forward(self, data):
""" Compute keypoints, scores, descriptors for image """
# Shared Encoder
x = self.relu(self.conv1a(data['image']))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
# Compute the dense keypoint scores
cPa = self.relu(self.convPa(x))
scores = self.convPb(cPa)
scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
b, _, h, w = scores.shape
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h*8, w*8)
scores = simple_nms(scores, self.config['nms_radius'])
# Extract keypoints
keypoints = [
torch.nonzero(s > self.config['keypoint_threshold'])
for s in scores]
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]
# Discard keypoints near the image borders
keypoints, scores = list(zip(*[
remove_borders(k, s, self.config['remove_borders'], h*8, w*8)
for k, s in zip(keypoints, scores)]))
# Keep the k keypoints with highest score
if self.config['max_keypoints'] >= 0:
keypoints, scores = list(zip(*[
top_k_keypoints(k, s, self.config['max_keypoints'])
for k, s in zip(keypoints, scores)]))
# Convert (h, w) to (x, y)
keypoints = [torch.flip(k, [1]).float() for k in keypoints]
# Compute the dense descriptors
cDa = self.relu(self.convDa(x))
descriptors = self.convDb(cDa)
descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1)
# Extract descriptors
descriptors = [sample_descriptors(k[None], d[None], 8)[0]
for k, d in zip(keypoints, descriptors)]
return {
'keypoints': keypoints,
'scores': scores,
'descriptors': descriptors,
}
def MLP(channels: List[int], do_bn: bool = True) -> nn.Module:
""" Multi-layer perceptron """
n = len(channels)
layers = []
for i in range(1, n):
layers.append(
nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True))
if i < (n-1):
if do_bn:
layers.append(nn.BatchNorm1d(channels[i]))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def normalize_keypoints(kpts, image_shape):
""" Normalize keypoints locations based on image image_shape"""
_, _, height, width = image_shape
one = kpts.new_tensor(1)
size = torch.stack([one*width, one*height])[None]
center = size / 2
scaling = size.max(1, keepdim=True).values * 0.7
return (kpts - center[:, None, :]) / scaling[:, None, :]
class KeypointEncoder(nn.Module):
""" Joint encoding of visual appearance and location using MLPs"""
def __init__(self, feature_dim: int, layers: List[int]) -> None:
super().__init__()
self.encoder = MLP([3] + layers + [feature_dim])
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, kpts, scores):
inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)]
return self.encoder(torch.cat(inputs, dim=1))
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> Tuple[torch.Tensor,torch.Tensor]:
dim = query.shape[1]
scores = torch.einsum('bdhn,bdhm->bhnm', query, key) / dim**.5
prob = torch.nn.functional.softmax(scores, dim=-1)
return torch.einsum('bhnm,bdhm->bdhn', prob, value), prob
class MultiHeadedAttention(nn.Module):
""" Multi-head attention to increase model expressivitiy """
def __init__(self, num_heads: int, d_model: int):
super().__init__()
assert d_model % num_heads == 0
self.dim = d_model // num_heads
self.num_heads = num_heads
self.merge = nn.Conv1d(d_model, d_model, kernel_size=1)
self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)])
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor:
batch_dim = query.size(0)
query, key, value = [l(x).view(batch_dim, self.dim, self.num_heads, -1)
for l, x in zip(self.proj, (query, key, value))]
x, _ = attention(query, key, value)
return self.merge(x.contiguous().view(batch_dim, self.dim*self.num_heads, -1))
class AttentionalPropagation(nn.Module):
def __init__(self, feature_dim: int, num_heads: int):
super().__init__()
self.attn = MultiHeadedAttention(num_heads, feature_dim)
self.mlp = MLP([feature_dim*2, feature_dim*2, feature_dim])
nn.init.constant_(self.mlp[-1].bias, 0.0)
def forward(self, x: torch.Tensor, source: torch.Tensor) -> torch.Tensor:
message = self.attn(x, source, source)
return self.mlp(torch.cat([x, message], dim=1))
class AttentionalGNN(nn.Module):
def __init__(self, feature_dim: int, layer_names: List[str]) -> None:
super().__init__()
self.layers = nn.ModuleList([
AttentionalPropagation(feature_dim, 4)
for _ in range(len(layer_names))])
self.names = layer_names
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor) -> Tuple[torch.Tensor,torch.Tensor]:
for layer, name in zip(self.layers, self.names):
if name == 'cross':
src0, src1 = desc1, desc0
else: # if name == 'self':
src0, src1 = desc0, desc1
delta0, delta1 = layer(desc0, src0), layer(desc1, src1)
desc0, desc1 = (desc0 + delta0), (desc1 + delta1)
return desc0, desc1
def log_sinkhorn_iterations(Z: torch.Tensor, log_mu: torch.Tensor, log_nu: torch.Tensor, iters: int) -> torch.Tensor:
""" Perform Sinkhorn Normalization in Log-space for stability"""
u, v = torch.zeros_like(log_mu), torch.zeros_like(log_nu)
for _ in range(iters):
u = log_mu - torch.logsumexp(Z + v.unsqueeze(1), dim=2)
v = log_nu - torch.logsumexp(Z + u.unsqueeze(2), dim=1)
return Z + u.unsqueeze(2) + v.unsqueeze(1)
def log_optimal_transport(scores: torch.Tensor, alpha: torch.Tensor, iters: int) -> torch.Tensor:
""" Perform Differentiable Optimal Transport in Log-space for stability"""
b, m, n = scores.shape
one = scores.new_tensor(1)
ms, ns = (m*one).to(scores), (n*one).to(scores)
bins0 = alpha.expand(b, m, 1)
bins1 = alpha.expand(b, 1, n)
alpha = alpha.expand(b, 1, 1)
couplings = torch.cat([torch.cat([scores, bins0], -1),
torch.cat([bins1, alpha], -1)], 1)
norm = - (ms + ns).log()
log_mu = torch.cat([norm.expand(m), ns.log()[None] + norm])
log_nu = torch.cat([norm.expand(n), ms.log()[None] + norm])
log_mu, log_nu = log_mu[None].expand(b, -1), log_nu[None].expand(b, -1)
Z = log_sinkhorn_iterations(couplings, log_mu, log_nu, iters)
Z = Z - norm # multiply probabilities by M+N
return Z
def arange_like(x, dim: int):
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1
class SuperGlue(nn.Module):
"""SuperGlue feature matching middle-end
Given two sets of keypoints and locations, we determine the
correspondences by:
1. Keypoint Encoding (normalization + visual feature and location fusion)
2. Graph Neural Network with multiple self and cross-attention layers
3. Final projection layer
4. Optimal Transport Layer (a differentiable Hungarian matching algorithm)
5. Thresholding matrix based on mutual exclusivity and a match_threshold
The correspondence ids use -1 to indicate non-matching points.
Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural
Networks. In CVPR, 2020. https://arxiv.org/abs/1911.11763
"""
default_config = {
'descriptor_dim': 256,
'weights': 'indoor',
'keypoint_encoder': [32, 64, 128, 256],
'GNN_layers': ['self', 'cross'] * 9,
'sinkhorn_iterations': 100,
'match_threshold': 0.2,
}
def __init__(self, config):
super().__init__()
self.config = {**self.default_config, **config}
self.kenc = KeypointEncoder(
self.config['descriptor_dim'], self.config['keypoint_encoder'])
self.gnn = AttentionalGNN(
feature_dim=self.config['descriptor_dim'], layer_names=self.config['GNN_layers'])
self.final_proj = nn.Conv1d(
self.config['descriptor_dim'], self.config['descriptor_dim'],
kernel_size=1, bias=True)
bin_score = torch.nn.Parameter(torch.tensor(1.))
self.register_parameter('bin_score', bin_score)
# assert self.config['weights'] in ['indoor', 'outdoor']
# path = Path(__file__).parent
# path = path / 'weights/superglue_{}.pth'.format(self.config['weights'])
# self.load_state_dict(torch.load(str(path)))
# print('Loaded SuperGlue model (\"{}\" weights)'.format(
# self.config['weights']))
def forward(self, data):
"""Run SuperGlue on a pair of keypoints and descriptors"""
desc0, desc1 = data['descriptors0'], data['descriptors1']
kpts0, kpts1 = data['keypoints0'], data['keypoints1']
if kpts0.shape[1] == 0 or kpts1.shape[1] == 0: # no keypoints
shape0, shape1 = kpts0.shape[:-1], kpts1.shape[:-1]
return {
'matches0': kpts0.new_full(shape0, -1, dtype=torch.int),
'matches1': kpts1.new_full(shape1, -1, dtype=torch.int),
'matching_scores0': kpts0.new_zeros(shape0),
'matching_scores1': kpts1.new_zeros(shape1),
}
# Keypoint normalization.
kpts0 = normalize_keypoints(kpts0, data['image0'].shape)
kpts1 = normalize_keypoints(kpts1, data['image1'].shape)
# Keypoint MLP encoder.
desc0 = desc0 + self.kenc(kpts0, data['scores0'])
desc1 = desc1 + self.kenc(kpts1, data['scores1'])
# Multi-layer Transformer network.
desc0, desc1 = self.gnn(desc0, desc1)
# Final MLP projection.
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
# Compute matching descriptor distance.
scores = torch.einsum('bdn,bdm->bnm', mdesc0, mdesc1)
scores = scores / self.config['descriptor_dim']**.5
# Run the optimal transport.
scores = log_optimal_transport(
scores, self.bin_score,
iters=self.config['sinkhorn_iterations'])
# Get the matches with score above "match_threshold".
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
indices0, indices1 = max0.indices, max1.indices
mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0)
mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1)
zero = scores.new_tensor(0)
mscores0 = torch.where(mutual0, max0.values.exp(), zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, indices1), zero)
valid0 = mutual0 & (mscores0 > self.config['match_threshold'])
valid1 = mutual1 & valid0.gather(1, indices1)
indices0 = torch.where(valid0, indices0, indices0.new_tensor(-1))
indices1 = torch.where(valid1, indices1, indices1.new_tensor(-1))
return {
'matches0': indices0, # use -1 for invalid match
'matches1': indices1, # use -1 for invalid match
'matching_scores0': mscores0,
'matching_scores1': mscores1,
}
class Matching(torch.nn.Module):
""" Image Matching Frontend (SuperPoint + SuperGlue) """
def __init__(self, config={}):
super().__init__()
self.superpoint = SuperPoint(config.get('superpoint', {}))
self.superglue = SuperGlue(config.get('superglue', {}))
def forward(self, data):
""" Run SuperPoint (optionally) and SuperGlue
SuperPoint is skipped if ['keypoints0', 'keypoints1'] exist in input
Args:
data: dictionary with minimal keys: ['image0', 'image1']
"""
pred = {}
# Extract SuperPoint (keypoints, scores, descriptors) if not provided
if 'keypoints0' not in data:
pred0 = self.superpoint({'image': data['image0']})
pred = {**pred, **{k+'0': v for k, v in pred0.items()}}
if 'keypoints1' not in data:
pred1 = self.superpoint({'image': data['image1']})
pred = {**pred, **{k+'1': v for k, v in pred1.items()}}
# Batch all features
# We should either have i) one image per batch, or
# ii) the same number of local features for all images in the batch.
data = {**data, **pred}
for k in data:
if isinstance(data[k], (list, tuple)):
data[k] = torch.stack(data[k])
# Perform the matching
pred = {**pred, **self.superglue(data)}
return pred
def points_to_homogeneous_representation(points: np.ndarray):
homogenous_points = np.concatenate((points, np.ones((points.shape[0], 1), dtype=points.dtype)), axis=1)
return homogenous_points
if __name__ == "__main__":
run()