-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
173 lines (146 loc) · 6.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
from utils import load_model_dataset
from argparse import ArgumentParser
import logging
import transformers
import random
import numpy as np
import os
from tqdm import tqdm
import json
import utils
from utils import BASELINE_LIST
from src.model.abstract_model import DynamicTransformerClassifier
import textattack
from textattack.shared import AttackedText
from collections import OrderedDict
from transformers import glue_compute_metrics as compute_metrics
import sys
logger = logging.getLogger(__name__)
def main():
parser = ArgumentParser()
# for deebert
parser.add_argument('--early_exit_entropy', type=float, default=None)
# for pabee
parser.add_argument('--early_exit_patience', type=int, default=None)
parser.add_argument('--model_name_or_path', type=str, required=True)
parser.add_argument('--model_type', type=str, default='deebert',
choices=["deebert", "deeroberta", "pabeebert", "pabeealbert"]
)
parser.add_argument('--data_dir', type=str, default='glue_data/SST-2')
parser.add_argument('--task_name', type=str, default='SST-2')
parser.add_argument('--do_lower_case', action="store_true", help="Set this flag if you are using an uncased model.")
parser.add_argument("--max_seq_length", default=128, type=int)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument('--demo_size', type=int, default=None)
parser.add_argument('--output_dir', type=str, default='results')
# hyperparameter for our methods
parser.add_argument('--top_n', type=int, default=100)
parser.add_argument('--beam_width', type=int, default=5)
parser.add_argument('--lam', type=float, default=0.8)
parser.add_argument('--per_size', type=int, default=10)
parser.add_argument('--modification_rate', type=float, default=0.1)
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.task_name = args.task_name.lower()
args.model_type = args.model_type.lower()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO)
transformers.utils.logging.set_verbosity(logging.INFO)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
config, model, tokenizer, _, test_data = load_model_dataset(args)
model = model.eval().to(args.device)
wrapper_model = DynamicTransformerClassifier(
model, tokenizer, args.device, args=args
)
if args.demo_size is not None:
test_data = test_data[:args.demo_size]
logger.info(args)
for (attack_class, grad_func_name) in BASELINE_LIST:
ori_exit_layer, adv_exit_layer = 0, 0
if grad_func_name is not None:
wrapper_model.get_grad = getattr(wrapper_model, grad_func_name)
recipe = attack_class.build(wrapper_model,
top_n=args.top_n,
beam_width=args.beam_width,
per_size=args.per_size,
modification_rate=args.modification_rate,
)
else:
raise NotImplementedError
logger.info(attack_class.__name__)
logger.info(f'is blackbox: {recipe.is_black_box}')
ori_preds = []
adv_preds = []
labels = []
ori_inputs = []
adv_inputs = []
for data in tqdm(test_data):
x = OrderedDict()
x['text_a'] = data.text_a
x['text_b'] = data.text_b if data.text_b else ''
x = AttackedText(x)
adv_sample = recipe.attack(x, data.label)
if grad_func_name is not None:
with torch.no_grad():
ori_rnt = wrapper_model.prediction([adv_sample.original_result.attacked_text.tokenizer_input])
adv_rnt = wrapper_model.prediction([adv_sample.perturbed_result.attacked_text.tokenizer_input])
else:
with torch.no_grad():
ori_rnt = wrapper_model.prediction([x.tokenizer_input])
adv_rnt = wrapper_model.prediction([adv_sample])
ori_exit_layer += int(ori_rnt['exit_layers'][0])
adv_exit_layer += int(adv_rnt['exit_layers'][0])
ori_preds.append(int(ori_rnt['predictions'][0]))
adv_preds.append(int(adv_rnt['predictions'][0]))
if grad_func_name is not None:
ori_inputs.append(adv_sample.original_result.attacked_text.tokenizer_input)
adv_inputs.append(adv_sample.perturbed_result.attacked_text.tokenizer_input)
else:
ori_inputs.append(x.tokenizer_input)
adv_inputs.append(adv_sample)
labels.append(int(data.label))
ori_preds, adv_preds, labels = np.array(ori_preds), np.array(adv_preds), np.array(labels)
logger.info(
f'{attack_class.__name__} '
f'exit layer before: {ori_exit_layer / len(test_data)} '
f'after: {adv_exit_layer / len(test_data)}'
)
output_dir = args.output_dir + f'/{attack_class.__name__}'
if attack_class in [utils.WhiteBoxCharacterMutationAttack, utils.WhiteBoxTokenMutationAttack]:
output_dir = output_dir + f'-{grad_func_name}'
output_dir = output_dir + f'-lam={args.lam}-top_n={args.top_n}-beam_width={args.beam_width}-per_size={args.per_size}'
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, 'ori_inputs.txt'), 'w', encoding='utf-8') as f:
for line in ori_inputs:
f.write('\t'.join(line)+'\n')
with open(os.path.join(output_dir, 'adv_inputs.txt'), 'w', encoding='utf-8') as f:
for line in adv_inputs:
f.write('\t'.join(line)+'\n')
results = {
'name': f'{attack_class.__name__}',
'model': f'{args.model_name_or_path}',
'ori_metrics': compute_metrics(args.task_name, ori_preds, labels),
'adv_metrics': compute_metrics(args.task_name, adv_preds, labels),
'ori_speedup': config.num_hidden_layers / (ori_exit_layer / len(test_data)),
'adv_speedup': config.num_hidden_layers / (adv_exit_layer / len(test_data))
}
if 'pabee' not in args.model_type:
results['entropy'] = f'{args.early_exit_entropy}'
else:
results['patience'] = f'{args.early_exit_patience}'
with open(os.path.join(output_dir, 'results.json'), 'w', encoding='utf-8') as f:
json.dump(results, f, indent=4)
if __name__ == '__main__':
main()